A126281 a(n) is the least m to satisfy the requirements of A052130.
1, 2, 5, 8, 10, 13, 16, 18, 21, 24, 27, 29, 32, 35, 37, 40, 43, 46, 48, 51, 54, 56, 59, 62, 65, 67, 70, 73
Offset: 1
Links
- J. H. Smith, Perfect Numbers.
Programs
-
Mathematica
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; f[n_] := Block[{a = 0, m = n}, While[ b = AlmostPrimePi[m-n+1, 2^m]; b > a, m++; a = b]; m--; m]; Array[f, 24] (* Eric W. Weisstein, Feb 07 2006 *)
Extensions
a(25)-a(28) from Robert G. Wilson v, Sep 07 2012
Expression in comment corrected by L. Edson Jeffery, Apr 03 2015
Comments