A126306 a(n) = number of double-rises (UU-subsequences) in the n-th Dyck path encoded by A014486(n).
0, 0, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 4, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3
Offset: 0
Keywords
Examples
A014486(20) = 228 (11100100 in binary), encodes the following Dyck path: /\ /..\/\ /......\ and there is one rising (left-hand side) slope with length 3 and one with length 1, so in the first slope, consisting of 3 U-steps, there are two cases with two consecutive U-steps (overlapping is allowed), thus a(20)=2.
Programs
-
Python
def ok(n): if n==0: return True B=bin(n)[2:] if n!=0 else '0' s=0 for b in B: s+=1 if b=='1' else -1 if s<0: return False return s==0 def a014081(n): return sum(((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1)) print([a014081(n) for n in range(4001) if ok(n)]) # Indranil Ghosh, Jun 13 2017