cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126326 a(1) = 1; for n>1, a(n) = smallest number which is not a sum or product or power of any subset of the numbers a(1) to a(n-1).

Original entry on oeis.org

1, 2, 5, 9, 13, 31, 35, 92, 118, 280, 516, 752, 1618, 1968, 5090, 6594, 15620, 19556, 48364, 61552, 149028, 188140, 460272, 583376, 1419928, 1796208, 4382888, 5549640, 13524944, 17117360, 41741584, 52840864, 128817168, 163051888, 397550784, 503232512, 1226887072
Offset: 1

Views

Author

Jonathan Vos Post, Mar 11 2007

Keywords

Comments

Analog of A065026, with powers.

Examples

			a(4) = 9 because the possible sums and products of a(1), a(2), a(3) are 1, 2, 5, 1+2, 1+5, 2+5, 1+2+5, 2*5, 2^2, 2^3, ..., 5^2, 5^3, ... = 1, 2, 4, 3, 4, 5, 6, 7, 8, 10, 16, 25, ... The smallest missing number is 9.
		

Crossrefs

Cf. A065026.

Programs

  • Maple
    A126326 := proc(amax) local a,n,sumset,prodset,j,powset,aprev,newsumset,newprodset ; a := [1,2] ; n := 3 ; sumset := {} ; prodset := {1} ; powset := {1} ; while n <= amax do aprev := op(-1,a) ; newsumset := sumset ; for j from 1 to nops(sumset) do if op(j,sumset)+aprev <= amax then newsumset := newsumset union { op(j,sumset)+aprev } ; fi ; od ; for j from 1 to nops(a)-1 do if op(j,a)+aprev <= amax then newsumset := newsumset union { op(j,a)+aprev } ; fi ; od ; sumset := newsumset ; newprodset := prodset ; for j from 1 to nops(prodset) do if op(j,prodset)*aprev <= amax then newprodset := newprodset union { op(j,prodset)*aprev } ; fi ; od ; for j from 1 to nops(a)-1 do if op(j,a)*aprev <= amax then newprodset := newprodset union { op(j,a)*aprev } ; fi ; od ; prodset := newprodset ; for j from 2 to floor(log(amax)/log(aprev)) do if aprev^j <= amax then powset := powset union { aprev^j } ; fi ; od ; while n in sumset or n in prodset or n in powset do n := n+1 ; od ; if n <= amax then a := [op(a),n] ; fi ; print(a) ; n := n+1 ; od ; RETURN(a) ; end: A126326(200000) ; # R. J. Mathar, Apr 03 2007

Formula

Conjectures from Colin Barker, Jun 21 2019: (Start)
G.f.: x*(1 - x)*(1 + 3*x + 6*x^2 + 11*x^3 + 10*x^4 + 15*x^5 + 6*x^6 + 4*x^7 + 10*x^8 + 166*x^10 + 52*x^11 + 236*x^12 - 236*x^13 - 210*x^14) / (1 - 2*x^2 - 4*x^4 + 2*x^6).
a(n) = 2*a(n-2) + 4*a(n-4) - 2*a(n-6) for n>16.
(End)

Extensions

More terms from R. J. Mathar, Apr 03 2007
a(21)-a(22) from Nathaniel Johnston, Oct 02 2011
a(23)-a(28) from Charlie Neder, Jun 02 2019
a(29)-a(37) from Giovanni Resta, Jun 03 2019