A126331 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 5*T(n-1,k) + T(n-1,k+1) for k >= 1.
1, 4, 1, 17, 9, 1, 77, 63, 14, 1, 371, 406, 134, 19, 1, 1890, 2535, 1095, 230, 24, 1, 10095, 15660, 8240, 2269, 351, 29, 1, 56040, 96635, 59129, 19936, 4053, 497, 34, 1, 320795, 598344, 412216, 162862, 40698, 6572, 668, 39, 1
Offset: 0
Examples
Triangle begins: 1; 4, 1; 17, 9, 1; 77, 63, 14, 1; 371, 406, 134, 19, 1; 1890, 2535, 1095, 230, 24, 1; 10095, 15660, 8240, 2269, 351, 29, 1; From _Philippe Deléham_, Nov 07 2011: (Start) Production matrix begins: 4, 1 1, 5, 1 0, 1, 5, 1 0, 0, 1, 5, 1 0, 0, 0, 1, 5, 1, 0, 0, 0, 0, 1, 5, 1 0, 0, 0, 0, 0, 1, 5, 1 0, 0, 0, 0, 0, 0, 1, 5, 1 0, 0, 0, 0, 0, 0, 0, 1, 5, 1 (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 4, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
Formula
Sum_{k=0..n} T(n,k) = A098409(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A104455(m+n).
Sum_{k=0..n} T(n,k)*(2*k+1) = 7^n. - Philippe Deléham, Mar 26 2007
Comments