cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126364 Number of base 10 n-digit numbers with adjacent digits differing by one or less.

Original entry on oeis.org

10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 398746, 1161634, 3385486, 9869934, 28781908, 83948652, 244894048, 714493794, 2084792450, 6083620812, 17753709802, 51812911858, 151218254846, 441351052720
Offset: 1

Views

Author

R. H. Hardin, Dec 26 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+3^(n-1) for base>=n; a(base,n)=a(base-1,n)+3^(n-1)-2 when base=n-1.

Programs

  • Mathematica
    CoefficientList[ Series[(1 + 4x - 22x^2 + 11x^3 + 14x^4 - 3x^5)/(1 - 6x + 10x^2 - x^3 - 6x^4 + x^5), {x, 0, 24}], x] (* Robert G. Wilson v, Aug 19 2011 *)
    LinearRecurrence[{6, -10, 1, 6, -1}, {10, 28, 80, 230, 664}, 30] (* Vincenzo Librandi, Mar 21 2015 *)
  • PARI
    Vec((1+4*x-22*x^2+11*x^3+14*x^4-3*x^5)/(1-6*x+10*x^2-x^3-6*x^4+x^5)+O(x^99)) \\ Charles R Greathouse IV, Aug 23 2011

Formula

G.f.: (1 + 4*x - 22*x^2 + 11*x^3 + 14*x^4 - 3*x^5)/(1 - 6*x + 10*x^2 - x^3 - 6*x^4 + x^5). - Alexander R. Povolotsky_, Aug 18 2011
Conjecture: a(n) = 3*a(n-1) - A025565(n), n >= 2. - Daniel Forgues, Aug 23 2011