A126364 Number of base 10 n-digit numbers with adjacent digits differing by one or less.
10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 398746, 1161634, 3385486, 9869934, 28781908, 83948652, 244894048, 714493794, 2084792450, 6083620812, 17753709802, 51812911858, 151218254846, 441351052720
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-10,1,6,-1).
Programs
-
Mathematica
CoefficientList[ Series[(1 + 4x - 22x^2 + 11x^3 + 14x^4 - 3x^5)/(1 - 6x + 10x^2 - x^3 - 6x^4 + x^5), {x, 0, 24}], x] (* Robert G. Wilson v, Aug 19 2011 *) LinearRecurrence[{6, -10, 1, 6, -1}, {10, 28, 80, 230, 664}, 30] (* Vincenzo Librandi, Mar 21 2015 *)
-
PARI
Vec((1+4*x-22*x^2+11*x^3+14*x^4-3*x^5)/(1-6*x+10*x^2-x^3-6*x^4+x^5)+O(x^99)) \\ Charles R Greathouse IV, Aug 23 2011
Formula
G.f.: (1 + 4*x - 22*x^2 + 11*x^3 + 14*x^4 - 3*x^5)/(1 - 6*x + 10*x^2 - x^3 - 6*x^4 + x^5). - Alexander R. Povolotsky_, Aug 18 2011
Conjecture: a(n) = 3*a(n-1) - A025565(n), n >= 2. - Daniel Forgues, Aug 23 2011
Comments