A126457 Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 3, n-k) for n>=k>=0.
1, 4, 1, 21, 6, 1, 286, 66, 9, 1, 8855, 1540, 171, 13, 1, 501942, 66045, 5984, 378, 18, 1, 45057474, 4582116, 341055, 18424, 741, 24, 1, 5843355957, 470155077, 29034396, 1353275, 47905, 1326, 31, 1, 1029873432159, 66983637864, 3470108187, 140364532
Offset: 0
Examples
Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 3, n-k) is illustrated by: T(n=4,k=1) = C( C(6,3) - C(3,3) + 3, n-k) = C(22,3) = 1540; T(n=4,k=2) = C( C(6,3) - C(4,3) + 3, n-k) = C(19,2) = 171; T(n=5,k=2) = C( C(7,3) - C(4,3) + 3, n-k) = C(34,3) = 5984. Triangle begins: 1; 4, 1; 21, 6, 1; 286, 66, 9, 1; 8855, 1540, 171, 13, 1; 501942, 66045, 5984, 378, 18, 1; 45057474, 4582116, 341055, 18424, 741, 24, 1; 5843355957, 470155077, 29034396, 1353275, 47905, 1326, 31, 1; ...
Programs
-
PARI
T(n,k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+3, n-k)
Formula
T(n,k) = C( n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3! + 3, n-k) for n>=k>=0.
Comments