cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126528 Number of base 7 n-digit numbers with adjacent digits differing by five or less.

Original entry on oeis.org

1, 7, 47, 317, 2137, 14407, 97127, 654797, 4414417, 29760487, 200635007, 1352612477, 9118849897, 61476161767, 414451220087, 2794088129357, 18836784876577, 126991149906247, 856130823820367, 5771740692453437, 38911098273822457, 262325293105201927
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+11^(n-1) for base>=5n-4; a(base,n)=a(base-1,n)+11^(n-1)-2 when base=5n-5.
For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,6} containing no subwords 00 and 11. - Milan Janjic, Jan 31 2015

Crossrefs

Cf. Base 7 differing by four or less A126502, three or less A126475, two or less A126394, one or less A126361.

Programs

  • Mathematica
    LinearRecurrence[{6, 5}, {1, 7}, 25] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    Vec((1+x)/(1-6*x-5*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016

Formula

From Philippe Deléham, Mar 24 2012: (Start)
G.f.: (1+x)/(1-6*x-5*x^2).
a(n) = 6*a(n-1) + 5*a(n-2), a(0) = 1, a(1) = 7 .
a(n) = Sum_{k=0..=n} A054458(n,k)*4^k.
(End)
a(n) = A091928(n+1)/5. - Philippe Deléham, Mar 27 2012
a(n) = (((3-sqrt(14))^n * (-4+sqrt(14)) + (3+sqrt(14))^n * (4+sqrt(14)))) / (2*sqrt(14)). - Colin Barker, Sep 08 2016