A254602
Numbers of n-length words on alphabet {0..7} with no subwords ii, where i is from {0..2}.
Original entry on oeis.org
1, 8, 61, 467, 3574, 27353, 209341, 1602152, 12261769, 93843143, 718210846, 5496691637, 42067895689, 321958728008, 2464050574501, 18858147661547, 144327286503334, 1104581743831073, 8453708639334181, 64698869194494632, 495160627558133329, 3789618738879406463
Offset: 0
-
[n le 1 select 8^n else 7*Self(n)+5*Self(n-1): n in [0..25]];
-
A254602:=n->(2^(-1-n) * ((7-sqrt(69))^n * (-9+sqrt(69)) + (7+sqrt(69))^n * (9+sqrt(69)))) / sqrt(69): seq(simplify(A254602(n)), n=0..30); # Wesley Ivan Hurt, Sep 08 2016
-
RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 5 a[n - 2]}, a[n], {n, 0, 25}]
LinearRecurrence[{7,5},{1,8},30] (* Harvey P. Dale, Jun 23 2017 *)
-
Vec((1+x)/(1-7*x-5*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016
A054458
Convolution triangle based on A001333(n), n >= 1.
Original entry on oeis.org
1, 3, 1, 7, 6, 1, 17, 23, 9, 1, 41, 76, 48, 12, 1, 99, 233, 204, 82, 15, 1, 239, 682, 765, 428, 125, 18, 1, 577, 1935, 2649, 1907, 775, 177, 21, 1, 1393, 5368, 8680, 7656, 4010, 1272, 238, 24, 1, 3363, 14641, 27312, 28548, 18358, 7506, 1946, 308, 27, 1
Offset: 0
Fourth row polynomial (n=3): p(3,x)= 17+23*x+9*x^2+x^3.
Triangle begins :
1
3, 1
7, 6, 1
17, 23, 9, 1
41, 76, 48, 12, 1
99, 233, 204, 82, 15, 1
239, 682, 765, 428, 125, 18, 1. - _Philippe Deléham_, Mar 25 2012
(0, 3, -2/3, -1/3, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins :
1
0, 1
0, 3, 1
0, 7, 6, 1
0, 17, 23, 9, 1
0, 41, 76, 48, 12, 1
0, 99, 233, 204, 82, 15, 1
0, 239, 682, 765, 428, 125, 15, 1. - _Philippe Deléham_, Mar 25 2012
A212835
T(n,k)=Number of 0..k arrays of length n+1 with 0 never adjacent to k.
Original entry on oeis.org
2, 7, 2, 14, 17, 2, 23, 50, 41, 2, 34, 107, 178, 99, 2, 47, 194, 497, 634, 239, 2, 62, 317, 1106, 2309, 2258, 577, 2, 79, 482, 2137, 6306, 10727, 8042, 1393, 2, 98, 695, 3746, 14407, 35954, 49835, 28642, 3363, 2, 119, 962, 6113, 29114, 97127, 204994, 231521
Offset: 1
Some solutions for n=5 k=4
..1....4....1....1....1....3....2....1....1....4....3....1....0....2....2....3
..1....3....0....4....2....4....1....1....2....2....3....4....1....3....3....1
..1....3....3....1....3....3....2....2....2....4....3....3....1....1....0....3
..1....3....0....4....2....3....3....3....4....2....2....0....4....4....2....1
..1....4....0....3....2....2....3....3....4....4....0....1....4....3....4....2
..1....2....0....4....3....1....0....2....4....2....3....2....1....4....3....4
A254600
Numbers of words on alphabet {0,1,...,10} with no subwords ii, for i from {0,1}.
Original entry on oeis.org
1, 11, 119, 1289, 13961, 151211, 1637759, 17738489, 192124721, 2080893611, 22538058599, 244108628489, 2643928812281, 28636265779211, 310158017102639, 3359306563039289, 36384487784316641, 394078636910520011, 4268246759164049879, 46229175323835178889
Offset: 0
-
[n le 1 select 11^n else 10*Self(n)+9*Self(n-1): n in [0..20]]; // Bruno Berselli, Feb 03 2015
-
RecurrenceTable[{a[0]==1, a[1]==11, a[n]== 10a[n-1] +9a[n-2]}, a[n], {n, 0, 25}]
Table[(-3 I)^(n-1)*(ChebyshevU[n-1, 5*I/3] - 3*I*ChebyshevU[n, 5*I/3]), {n,0,25}] (* G. C. Greubel, Feb 13 2021 *)
-
Vec((x+1) / (1-10*x-9*x^2) + O(x^30)) \\ Colin Barker, Jan 21 2017
-
[(-3*i)^(n-1)*( chebyshev_U(n-1, 5*i/3) -3*i*chebyshev_U(n, 5*i/3) ) for n in (0..30)] # G. C. Greubel, Feb 13 2021
A254657
Numbers of words on alphabet {0,1,...,8} with no subwords ii, where i is from {0,1,2}.
Original entry on oeis.org
1, 9, 78, 678, 5892, 51204, 444984, 3867096, 33606672, 292055952, 2538087648, 22057036896, 191684821056, 1665820789824, 14476675244928, 125808326698368, 1093326665056512, 9501463280642304, 82571666235477504, 717582109567673856, 6236086873954255872
Offset: 0
-
[n le 1 select 9^n else 8*Self(n)+6*Self(n-1): n in [0..20]];
-
RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 6 a[n - 2]}, a[n], {n, 0, 20}]
-
Vec((1+x)/(1-8*x-6*x^2) + O(x^30)) \\ Colin Barker, Nov 16 2016
A254601
Numbers of n-length words on alphabet {0,1,...,6} with no subwords ii, where i is from {0,1,2}.
Original entry on oeis.org
1, 7, 46, 304, 2008, 13264, 87616, 578752, 3822976, 25252864, 166809088, 1101865984, 7278432256, 48078057472, 317582073856, 2097804673024, 13857156333568, 91534156693504, 604633565495296, 3993938019745792, 26382162380455936, 174268726361718784
Offset: 0
-
[n le 1 select 7^n else 6*Self(n)+4*Self(n-1): n in [0..25]]; // Bruno Berselli, Feb 03 2015
-
RecurrenceTable[{a[0] == 1, a[1] == 7, a[n] == 6 a[n - 1] + 4 a[n - 2]}, a[n], {n, 0, 25}]
LinearRecurrence[{6,4},{1,7},30] (* Harvey P. Dale, Oct 10 2017 *)
-
Vec((1 + x)/(1 - 6*x - 4*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017
A254658
Numbers of words on alphabet {0,1,...,7} with no subwords ii, where i is from {0,1,2,3}.
Original entry on oeis.org
1, 8, 60, 452, 3404, 25636, 193068, 1454020, 10950412, 82468964, 621084396, 4677466628, 35226603980, 265296094372, 1997979076524, 15047037913156, 113321181698188, 853436423539940, 6427339691572332, 48405123535166084, 364545223512451916, 2745437058727827748
Offset: 0
-
[n le 1 select 8^n else 7*Self(n)+4*Self(n-1): n in [0..20]];
-
RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 4 a[n - 2]}, a[n], {n, 0, 20}]
LinearRecurrence[{7,4},{1,8},30] (* Harvey P. Dale, Jan 21 2023 *)
-
Vec((1 + x) / (1 - 7*x -4*x^2) + O(x^30)) \\ Colin Barker, Jan 21 2017
A254660
Numbers of words on alphabet {0,1,...,6} with no subwords ii, where i is from {0,1,...,4}.
Original entry on oeis.org
1, 7, 44, 278, 1756, 11092, 70064, 442568, 2795536, 17658352, 111541184, 704563808, 4450465216, 28111918912, 177572443904, 1121658501248, 7085095895296, 44753892374272, 282693546036224, 1785669060965888, 11279401457867776, 71247746869138432
Offset: 0
-
RecurrenceTable[{a[0] == 1, a[1] == 7, a[n] == 6 a[n - 1] + 2 a[n - 2]}, a[n], {n, 0, 20}]
LinearRecurrence[{6,2},{1,7},30] (* Harvey P. Dale, Sep 11 2024 *)
-
Vec((1 + x) / (1 - 6*x -2*x^2) + O(x^30)) \\ Colin Barker, Jan 21 2017
A254663
Numbers of n-length words on alphabet {0,1,...,7} with no subwords ii, where i is from {0,1,...,5}.
Original entry on oeis.org
1, 8, 58, 422, 3070, 22334, 162478, 1182014, 8599054, 62557406, 455099950, 3310814462, 24085901134, 175222936862, 1274732360302, 9273572395838, 67464471491470, 490798445231966, 3570518059606702, 25975223307710846, 188967599273189326, 1374723641527746974
Offset: 0
-
[n le 1 select 8^n else 7*Self(n)+2*Self(n-1): n in [0..20]];
-
RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 2 a[n - 2]}, a[n], {n, 0, 20}]
LinearRecurrence[{7,2},{1,8},30] (* Harvey P. Dale, Nov 28 2023 *)
-
Vec((1 + x)/(1 - 7*x - 2*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017
A254664
Numbers of words on alphabet {0,1,...,8} with no subwords ii, where i is from {0,1,...,5}.
Original entry on oeis.org
1, 9, 75, 627, 5241, 43809, 366195, 3060987, 25586481, 213874809, 1787757915, 14943687747, 124912775721, 1044133269009, 8727804479235, 72954835640907, 609822098564961, 5097441295442409, 42608996659234155, 356164297160200467
Offset: 0
-
[n le 1 select 9^n else 8*Self(n)+3*Self(n-1): n in [0..20]];
-
RecurrenceTable[{a[0] == 1, a[1] == 9, a[n] == 8 a[n - 1] + 3 a[n - 2]}, a[n], {n, 0, 20}]
LinearRecurrence[{8,3},{1,9},20] (* Harvey P. Dale, Feb 16 2024 *)
Showing 1-10 of 13 results.
Next
Comments