cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A255115 Number of n-length words on {0,1,2} in which 0 appears only in runs of length 2.

Original entry on oeis.org

1, 2, 5, 12, 28, 66, 156, 368, 868, 2048, 4832, 11400, 26896, 63456, 149712, 353216, 833344, 1966112, 4638656, 10944000, 25820224, 60917760, 143723520, 339087488, 800010496, 1887468032, 4453111040, 10506243072, 24787422208, 58481066496, 137974619136
Offset: 0

Views

Author

Milan Janjic, Feb 14 2015

Keywords

Comments

Apparently a(n) = A239333(n).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 2,  a[2]== 5, a[n] == 2 a[n - 1] + 2 a[n - 3]}, a[n], {n, 0, 29}]
  • PARI
    Vec(-(x^2+1)/(2*x^3+2*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015

Formula

a(n+3) = 2*a(n+2) + 2*a(n) with n>1, a(0) = 1, a(1) = 2, a(2)=5.
G.f.: -(x^2+1) / (2*x^3+2*x-1). - Colin Barker, Feb 15 2015
a(n) = A052912(n)+A052912(n-2). - R. J. Mathar, Jun 18 2015

A255116 Number of n-length words on {0,1,2,3} in which 0 appears only in runs of length 2.

Original entry on oeis.org

1, 3, 10, 33, 108, 354, 1161, 3807, 12483, 40932, 134217, 440100, 1443096, 4731939, 15516117, 50877639, 166828734, 547034553, 1793736576, 5881695930, 19286191449, 63239784075, 207364440015, 679951894392, 2229575035401, 7310818426248, 23972310961920
Offset: 0

Views

Author

Milan Janjic, Feb 14 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 3,  a[2]== 10, a[n] == 3 a[n - 1] + 3 a[n - 3]}, a[n], {n, 0, 25}]
    LinearRecurrence[{3,0,3},{1,3,10},30] (* Harvey P. Dale, Feb 20 2023 *)
  • PARI
    Vec(-(x^2+1)/(3*x^3+3*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015

Formula

a(n+3) = 3*a(n+2) + 3*a(n) with n>1, a(0) = 1, a(1) = 3, a(2) = 10.
G.f.: -(x^2+1) / (3*x^3+3*x-1). - Colin Barker, Feb 15 2015
a(n) = A089978(n) + A089978(n-2). - R. J. Mathar, Aug 04 2019

A255117 Number of n-length words on {0,1,2,3,4} in which 0 appears only in runs of length 2.

Original entry on oeis.org

1, 4, 17, 72, 304, 1284, 5424, 22912, 96784, 408832, 1726976, 7295040, 30815488, 130169856, 549859584, 2322700288, 9811480576, 41445360640, 175072243712, 739534897152, 3123921031168, 13195973099520, 55742031986688, 235463812071424, 994639140683776
Offset: 0

Views

Author

Milan Janjic, Feb 14 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 4,  a[2]== 17, a[n] == 4 a[n - 1] + 4 a[n - 3]}, a[n], {n, 0, 25}]
  • PARI
    Vec(-(x^2+1)/(4*x^3+4*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015

Formula

a(n+3) = 4*a(n+2) + 4*a(n) with n>1, a(0) = 1, a(1) = 4, a(2) = 17.
G.f.: -(x^2+1) / (4*x^3+4*x-1). - Colin Barker, Feb 15 2015
a(n) = A089979(n) + A089979(n-2). - R. J. Mathar, Aug 04 2019

A255118 Number of n-length words on {0,1,2,3,4,5} in which 0 appears only in runs of length 2.

Original entry on oeis.org

1, 5, 26, 135, 700, 3630, 18825, 97625, 506275, 2625500, 13615625, 70609500, 366175000, 1898953125, 9847813125, 51069940625, 264844468750, 1373461409375, 7122656750000, 36937506093750, 191554837515625, 993387471328125, 5151624887109375, 26715898623125000
Offset: 0

Views

Author

Milan Janjic, Feb 14 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 5,  a[2]== 26, a[n] == 5 a[n - 1] + 5 a[n - 3]}, a[n], {n, 0, 20}]
  • PARI
    Vec(-(x^2+1)/(5*x^3+5*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015

Formula

a(n+3) = 5*a(n+2) + 5*a(n) with n>1, a(0) = 1, a(1) = 5, a(2) = 26.
G.f.: -(x^2+1) / (5*x^3+5*x-1). - Colin Barker, Feb 15 2015

A015591 Expansion of x/(1 - 10*x - 9*x^2).

Original entry on oeis.org

0, 1, 10, 109, 1180, 12781, 138430, 1499329, 16239160, 175885561, 1905008050, 20633050549, 223475577940, 2420453234341, 26215812544870, 283942204557769, 3075364358481520, 33309123425835121, 360769513484684890, 3907477245679364989, 42321698078155813900
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 2, 1, 4, 4, 2, 48, 8, 1, 4, 10, 4, 84, 48, 4, 16, 272, 2, 360, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Cf. A254600.

Programs

  • Magma
    [n le 2 select n-1 else 10*Self(n-1) + 9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
  • Mathematica
    Join[{a=0,b=1},Table[c=10*b+9*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2011 *)
    LinearRecurrence[{10, 9}, {0, 1}, 30] (* Vincenzo Librandi, Nov 15 2012 *)
    Table[(-3 I)^(n - 1)*ChebyshevU[n - 1, 5 I/3], {n, 0, 30}] (* G. C. Greubel, Feb 13 2021 *)
  • Sage
    [lucas_number1(n,10,-9) for n in range(0, 18)] # Zerinvary Lajos, Apr 26 2009
    

Formula

a(n) = 10*a(n-1) + 9*a(n-2).
a(n) = (-3*i)^(n-1) * ChebyshevU(n-1, -5*i/3). - G. C. Greubel, Feb 13 2021

Extensions

Extended by T. D. Noe, May 23 2011

A255119 Number of n-length words on {0,1,2,3,4,5,6} in which 0 appears only in runs of length 2.

Original entry on oeis.org

1, 6, 37, 228, 1404, 8646, 53244, 327888, 2019204, 12434688, 76575456, 471567960, 2904015888, 17883548064, 110130696144, 678208272192, 4176550921536, 25720089706080, 158389787869632, 975398032747008, 6006708734718528, 36990591135528960
Offset: 0

Views

Author

Milan Janjic, Feb 14 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 6,  a[2]== 37, a[n] == 6 a[n - 1] + 6 a[n - 3]}, a[n], {n, 0, 20}]
    LinearRecurrence[{6,0,6},{1,6,37},30] (* Harvey P. Dale, Nov 06 2017 *)
  • PARI
    Vec(-(x^2+1)/(6*x^3+6*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015

Formula

a(n+3) = 6*a(n+2) + 6*a(n) with n>1, a(0) = 1, a(1) = 6, a(2) = 37.
G.f.: -(x^2+1) / (6*x^3+6*x-1). - Colin Barker, Feb 15 2015
Showing 1-6 of 6 results.