cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A255633 Number of n-length words on {0,1,2,3,4,5} avoiding runs of zeros of length 1 (mod 3).

Original entry on oeis.org

1, 5, 26, 136, 710, 3706, 19346, 100990, 527186, 2752006, 14365970, 74992966, 391476866, 2043580150, 10667858546, 55688153926, 290702250530, 1517518403926, 7921720943186, 41352818219110, 215869201519106, 1126876333254646, 5882498575587890, 30707708087054086
Offset: 0

Views

Author

Milan Janjic, Feb 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 5,  a[2] == 26,  a[n] == 5* a[n - 1] +  6*a[n - 3]}, a[n], {n, 0, 20}]
    LinearRecurrence[{5,0,6},{1,5,26},30] (* Harvey P. Dale, Aug 11 2023 *)
  • PARI
    Vec((1 + x^2)/(1 - 5*x - 6*x^3) + O(x^30)) \\ Andrew Howroyd, May 01 2020

Formula

a(n+3) = 5*a(n+2) + 6*a(n) with n > 0, a(0) = 1, a(1) = 5, a(2) = 26.
G.f.: (1 + x^2)/(1 - 5*x - 6*x^3). - Andrew Howroyd, May 01 2020

Extensions

Terms a(20) and beyond from Andrew Howroyd, May 01 2020

A255630 Number of n-length ternary words avoiding runs of zeros of length 1 (mod 3).

Original entry on oeis.org

1, 2, 5, 13, 32, 79, 197, 490, 1217, 3025, 7520, 18691, 46457, 115474, 287021, 713413, 1773248, 4407559, 10955357, 27230458, 67683593, 168233257, 418157888, 1039366555, 2583432881, 6421339426, 15960778517, 39671855677, 98607729632
Offset: 0

Views

Author

Milan Janjic, Feb 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[2] == 2,  a[3] == 5,  a[n] == 2* a[n - 1] +  3*a[n - 3]}, a[n], {n, 0, 29}]

Formula

a(n+3) = 2*a(n+2) + 3*a(n) with n > 0, a(0) = 1, a(2) = 2, a(3) = 5.
G.f.: ( -1-x^2 ) / ( -1+2*x+3*x^3 ). - R. J. Mathar, Aug 07 2015
a(n) = A099525(n)+A099525(n-2). - R. J. Mathar, Aug 07 2015

A255631 Number of n-length words on {0,1,2,3} avoiding runs of zeros of length 1 (mod 3).

Original entry on oeis.org

1, 3, 10, 34, 114, 382, 1282, 4302, 14434, 48430, 162498, 545230, 1829410, 6138222, 20595586, 69104398, 231866082, 777980590, 2610359362, 8758542414, 29387549602, 98604086254, 330846428418, 1110089483662, 3724684796002, 12497440101678, 41932678239682
Offset: 0

Views

Author

Milan Janjic, Feb 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 3,  a[2] == 10,  a[n] == 3* a[n - 1] +  4*a[n - 3]}, a[n], {n, 0, 25}]
    LinearRecurrence[{3,0,4},{1,3,10},40] (* Harvey P. Dale, Aug 01 2021 *)

Formula

a(n+3) = 3*a(n+2) + 4*a(n) with n > 0, a(0) = 1, a(1) = 3, a(2) = 10.
G.f.: -(x^2+1) / (4*x^3+3*x-1). - Colin Barker, Mar 20 2015

A255632 Number of n-length words on {0,1,2,3,4} avoiding runs of zeros of length 1 (mod 3).

Original entry on oeis.org

1, 4, 17, 73, 312, 1333, 5697, 24348, 104057, 444713, 1900592, 8122653, 34714177, 148359668, 634051937, 2709778633, 11580912872, 49493911173, 211524537857, 904002715788, 3863480419017, 16511544365353, 70566191040352
Offset: 0

Views

Author

Milan Janjic, Feb 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 1, a[1] == 4,  a[2] == 17,  a[n] == 4*a[n - 1] +  5*a[n - 3]}, a[n], {n, 0, 23}]

Formula

a(n+3) = 4*a(n+2) + 5*a(n) with n > 0, a(0) = 1, a(1) = 4, a(2) = 17.
G.f.: ( -1-x^2 ) / ( -1+4*x+5*x^3 ). - R. J. Mathar, Nov 07 2015
Showing 1-4 of 4 results.