A126570 Triangle read by rows: row n gives coefficients (ignoring the alternating signs) of the characteristic polynomial of the n X n matrix with 2's in the main diagonal, 1's in the super- and subdiagonals, and 1 in the upper-right corner, with other elements zeros.
1, 1, 2, 1, 4, 3, 1, 6, 10, 5, 1, 8, 21, 20, 4, 1, 10, 36, 56, 35, 7, 1, 12, 55, 120, 126, 56, 6, 1, 14, 78, 220, 330, 252, 84, 9, 1, 16, 105, 364, 715, 792, 462, 120, 8, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 11, 1, 20, 171, 816, 2380, 4368, 5005, 3432, 1287, 220, 10
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 2; 1, 4, 3; 1, 6, 10, 5; 1, 8, 21, 20, 4; 1, 10, 36, 56, 35, 7; 1, 12, 55, 120, 126, 56, 6; ... Charpoly of the 4 X 4 matrix [2,1,0,1; 1,2,1,0; 0,1,2,1; 0,0,1,2] = x^4 - 8*x^3 + 21*x^2 - 20*x + 4; with a root sqrt(3)+2.
References
- William G. Harter, Physics Department, University of Arkansas; personal communication.
Programs
-
Mathematica
M[i_,j_,n_]:=If[i==j,2,If[Abs[i-j]==1,1,If[j==n&&i==1,1,0]]]; row[0]=1; row[n_]:=Reverse[Abs[CoefficientList[CharacteristicPolynomial[Table[M[i,j,n],{i,n},{j,n}],x],x]]]; Array[row,11,0]//Flatten (* Stefano Spezia, Jun 30 2025 *)
Formula
It seems that for n > 2, T(n, k) = binomial(2n+1-k, k) - [k=n] * (-1)^n. - Andrei Zabolotskii, Jun 29 2025
Extensions
Edited by N. J. A. Sloane, Aug 10 2019
Edited and extended by Andrei Zabolotskii, Jun 29 2025