A126627 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks digits 1,2,3 and at least one of digits 4,5,6,7,8,9.
7, 49, 343, 2401, 16807, 116929, 803383, 5432161, 36120007, 236404609, 1525601623, 9726181921, 61371928807, 383929313089, 2384606035063, 14723095123681, 90457525939207, 553507860826369, 3375536272503703, 20528377102849441, 124556950506727207
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
Crossrefs
Programs
-
Maple
f:=n->6*6^n-15*5^n+20*4^n-15*3^n+6*2^n-1;
-
Mathematica
LinearRecurrence[{21,-175,735,-1624,1764,-720},{7,49,343,2401,16807,116929},30] (* Harvey P. Dale, Aug 02 2017 *)
-
PARI
vector(100, n, 6*6^n-15*5^n+20*4^n-15*3^n+6*2^n-1) \\ Colin Barker, Feb 23 2015
Formula
a(n) = 6*6^n-15*5^n+20*4^n-15*3^n+6*2^n-1.
G.f.: -x*(720*x^5 -1764*x^4 +1372*x^3 -539*x^2 +98*x -7) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)). - Colin Barker, Feb 23 2015