A126631 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3, at least one of digits 4,5 and at least one of digits 6,7,8,9.
9, 77, 633, 5021, 38409, 283277, 2019033, 13963901, 94144809, 621444077, 4031587833, 25787305181, 163054382409, 1021372934477, 6349128459033, 39222102764861, 241061530639209, 1475385002210477, 8998880800344633, 54732125638998941
Offset: 1
Examples
a(8) = 13963901.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
Crossrefs
Programs
-
Maple
f:=n->16*6^n-40*5^n+44*4^n-26*3^n+8*2^n-1;
-
Mathematica
LinearRecurrence[{21,-175,735,-1624,1764,-720},{9,77,633,5021,38409,283277},30] (* Harvey P. Dale, Oct 14 2016 *)
-
PARI
Vec(-x*(720*x^5-1764*x^4+1412*x^3-591*x^2+112*x-9)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015
Formula
a(n) = 16*6^n-40*5^n+44*4^n-26*3^n+8*2^n-1.
G.f.: -x*(720*x^5-1764*x^4+1412*x^3-591*x^2+112*x-9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, Feb 22 2015