A126683 Number of partitions of the n-th triangular number n(n+1)/2 into distinct odd parts.
1, 1, 1, 1, 2, 4, 8, 16, 33, 68, 144, 312, 686, 1523, 3405, 7652, 17284, 39246, 89552, 205253, 472297, 1090544, 2525904, 5867037, 13663248, 31896309, 74628130, 174972341, 411032475, 967307190, 2280248312, 5383723722, 12729879673, 30141755384, 71462883813
Offset: 0
Keywords
Examples
The 5th triangular number is 15. Writing this as a sum of distinct odd numbers: 15 = 11 + 3 + 1 = 9 + 5 + 1 = 7 + 5 + 3 are all the possibilities. So a(5) = 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
g:= mul(1+x^(2*j+1),j=0..900): seq(coeff(g,x,n*(n+1)/2),n=0..40); # Emeric Deutsch, Feb 27 2007 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i^2
n, 0, b(n-2*i+1, i-1)))) end: a:= n-> b(n*(n+1)/2, ceil(n*(n+1)/4)*2-1): seq(a(n), n=0..40); # Alois P. Heinz, Jan 31 2018 -
Mathematica
a[n_] := SeriesCoefficient[QPochhammer[-x, x^2], {x, 0, n*(n+1)/2}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 25 2018 *)
Extensions
More terms from Emeric Deutsch, Feb 27 2007
a(0)=1 prepended by Alois P. Heinz, Jan 31 2018
Comments