A126689 Decimal expansion of negative of Granville-Soundararajan constant.
6, 5, 6, 9, 9, 9, 0, 1, 3, 7, 1, 6, 9, 2, 7, 8, 6, 8, 2, 7, 9, 1, 2, 0, 0, 5, 6, 8, 8, 9, 5, 7, 5, 7, 8, 0, 7, 5, 5, 4, 7, 4, 1, 9, 1, 5, 4, 0, 8, 9, 8, 3, 1, 6, 5, 7, 1, 5, 7, 7, 8, 1, 6, 3, 5, 2, 6, 0, 2, 7, 8, 8, 8, 1, 1, 3, 8, 2, 8, 4, 4, 0, 2, 4, 0, 5, 7, 6, 0, 3, 8, 2, 6, 3, 9, 8, 3, 6, 5, 3, 8, 7, 1, 5, 2
Offset: 0
Examples
-0.65699901371692786827912005688957578075547419154089...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.33, p. 206.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Antal Balog, Andrew Granville and Kannan Soundararajan, Multiplicative functions in arithmetic progressions, Annales mathématiques du Québec, Vol. 37, No. 1 (2013), pp. 3-30, see p. 10; arXiv preprint, arXiv:math/0702389 [math.NT], 2007, see p. 7.
- Andrew Granville and Kannan Soundararajan, The spectrum of multiplicative functions, Annals of Mathematics, Vol. 153, No. 2 (2001), pp. 407-470, alternative link.
Crossrefs
Cf. A143301.
Programs
-
Maple
Digits := 40 ; K := proc(s) 0.5+add( binomial(s,k)*(-1)^k/k*(exp(0.5*k)-1),k=1..s) ; end: A126689 := proc(smax) 1.0-log(4.0)+add(K(s)*2^(2-s)/s,s=1..smax) ; end: for smax from 0 to 2*Digits do print(A126689(smax)) ; od ; # R. J. Mathar, Feb 16 2007 read("transforms3") ; Digits := 120 : x := 1+Pi^2/3+4*dilog(exp(1/2)+1) ; x := evalf(x) ; CONSTTOLIST(x) ; # R. J. Mathar, Sep 20 2009
-
Mathematica
RealDigits[ N[ 4*PolyLog[2, -Sqrt[E]] + Pi^2/3 + 1, 105]][[1]] (* Jean-François Alcover, Nov 08 2012, after R. J. Mathar *)
-
PARI
1-2*log(1+exp(1/2))+4*intnum(t=1,exp(1/2),log(t)/(t+1)) \\ Charles R Greathouse IV, Apr 29 2013
-
Python
from mpmath import mp, polylog, sqrt, e, pi mp.dps=106 print([int(k) for k in list(str(4*polylog(2, -sqrt(e)) + pi**2/3 + 1)[3:-1])]) # Indranil Ghosh, Jul 03 2017
Formula
Equals 1-2*log[1+sqrt e]+4*Integral_{t=1..sqrt e}([log t]/(1+t)) dt = 1-log 4+4*Sum_{s>=1} K(s)/(s*2^s) where K(s)=Sum_{k=0..s} binomial(s,k)*(-1)^k*[exp(k/2)-1]/k. - R. J. Mathar, Feb 16 2007
Equals 1 - 2 * A143301. - Amiram Eldar, Aug 25 2020
Extensions
More terms from R. J. Mathar, Feb 16 2007, Sep 20 2009
Comments