cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126689 Decimal expansion of negative of Granville-Soundararajan constant.

Original entry on oeis.org

6, 5, 6, 9, 9, 9, 0, 1, 3, 7, 1, 6, 9, 2, 7, 8, 6, 8, 2, 7, 9, 1, 2, 0, 0, 5, 6, 8, 8, 9, 5, 7, 5, 7, 8, 0, 7, 5, 5, 4, 7, 4, 1, 9, 1, 5, 4, 0, 8, 9, 8, 3, 1, 6, 5, 7, 1, 5, 7, 7, 8, 1, 6, 3, 5, 2, 6, 0, 2, 7, 8, 8, 8, 1, 1, 3, 8, 2, 8, 4, 4, 0, 2, 4, 0, 5, 7, 6, 0, 3, 8, 2, 6, 3, 9, 8, 3, 6, 5, 3, 8, 7, 1, 5, 2
Offset: 0

Views

Author

Jonathan Vos Post, Feb 14 2007

Keywords

Comments

For any completely multiplicative function f(n) with -1 <= f(n) <= 1, the sum f(1) + f(2) + ... + f(x) is at most (c + o(1))x, where c is this constant. Further, this bound is sharp in that for any c0 > c there are infinitely many f and arbitrarily large x giving a sum less than c0*x. - Charles R Greathouse IV, May 26 2015
Named after the British mathematician Andrew James Granville (b. 1962) and the Indian-American mathematician Kannan Soundararajan (b. 1973). - Amiram Eldar, Jun 23 2021

Examples

			-0.65699901371692786827912005688957578075547419154089...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.33, p. 206.

Crossrefs

Cf. A143301.

Programs

  • Maple
    Digits := 40 ; K := proc(s) 0.5+add( binomial(s,k)*(-1)^k/k*(exp(0.5*k)-1),k=1..s) ; end: A126689 := proc(smax) 1.0-log(4.0)+add(K(s)*2^(2-s)/s,s=1..smax) ; end: for smax from 0 to 2*Digits do print(A126689(smax)) ; od ; # R. J. Mathar, Feb 16 2007
    read("transforms3") ; Digits := 120 : x := 1+Pi^2/3+4*dilog(exp(1/2)+1) ; x := evalf(x) ; CONSTTOLIST(x) ; # R. J. Mathar, Sep 20 2009
  • Mathematica
    RealDigits[ N[ 4*PolyLog[2, -Sqrt[E]] + Pi^2/3 + 1, 105]][[1]] (* Jean-François Alcover, Nov 08 2012, after R. J. Mathar *)
  • PARI
    1-2*log(1+exp(1/2))+4*intnum(t=1,exp(1/2),log(t)/(t+1)) \\ Charles R Greathouse IV, Apr 29 2013
    
  • Python
    from mpmath import mp, polylog, sqrt, e, pi
    mp.dps=106
    print([int(k) for k in list(str(4*polylog(2, -sqrt(e)) + pi**2/3 + 1)[3:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

Equals 1-2*log[1+sqrt e]+4*Integral_{t=1..sqrt e}([log t]/(1+t)) dt = 1-log 4+4*Sum_{s>=1} K(s)/(s*2^s) where K(s)=Sum_{k=0..s} binomial(s,k)*(-1)^k*[exp(k/2)-1]/k. - R. J. Mathar, Feb 16 2007
Equals 1 - 2 * A143301. - Amiram Eldar, Aug 25 2020

Extensions

More terms from R. J. Mathar, Feb 16 2007, Sep 20 2009