cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372404 Powerful k that are not prime powers such that k/rad(k) is nonsquarefree, where rad = A007947.

Original entry on oeis.org

72, 108, 144, 200, 216, 288, 324, 392, 400, 432, 500, 576, 648, 675, 784, 800, 864, 968, 972, 1000, 1125, 1152, 1296, 1323, 1352, 1372, 1568, 1600, 1728, 1800, 1936, 1944, 2000, 2025, 2304, 2312, 2500, 2592, 2700, 2704, 2744, 2888, 2916, 3087, 3136, 3200, 3267, 3375, 3456
Offset: 1

Views

Author

Michael De Vlieger, Jun 04 2024

Keywords

Comments

A001694 \ A246547 = A286708, i.e., A286708 contains powerful numbers without perfect prime powers. Hence, this sequence is a proper subset of A286708 which in turn is contained in A126706.
Numbers k in A286708 are such that rad(k)^2 | k. Numbers in this sequence are such that k != A120944(m)^2 for some m, where A120944 is the sequence of squarefree composites.

Examples

			The number 36 is not in the sequence since 36/rad(36) = 36/6 = 6, squarefree.
a(1) = 72 since 72/rad(72) = 72/6 = 12 is nonsquarefree.
a(2) = 108 since 108/rad(108) = 108/6 = 18 is nonsquarefree.
a(4) = 200 since 200/rad(200) = 200/10 = 20 is nonsquarefree, etc.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 3300},
      Select[
        Select[Rest@ Union@ Flatten@
          Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],
        Not@*PrimePowerQ],
      Not@ SquareFreeQ[#/(Times @@ FactorInteger[#][[;;, 1]])] &] ]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    isok(k) = ispowerful(k) && !isprimepower(k) && !issquarefree(k/rad(k)); \\ Michel Marcus, Jun 05 2024

Formula

A286708 = union of A177492 and this sequence.
A001694 = union of A246547, A177492, and this sequence.
A126706 = union of A332785, A177492, and this sequence.

A383394 Perfect powers of Achilles numbers.

Original entry on oeis.org

5184, 11664, 40000, 82944, 153664, 186624, 250000, 373248, 419904, 455625, 640000, 746496, 937024, 944784, 1259712, 1265625, 1327104, 1750329, 1827904, 1882384, 2458624, 3240000, 3779136, 4000000, 5345344, 6718464, 7290000, 8000000, 8340544, 9529569, 10240000
Offset: 1

Views

Author

Michael De Vlieger, Aug 01 2025

Keywords

Comments

Proper subset of A131605, where A286708 is the union of A131605 and A052486. Therefore these are both powerful numbers and perfect powers, unlike Achilles numbers themselves.
Proper subset of A366854.
This sequence does not intersect A303606, also a proper subset of A131605.

Examples

			Table of n, a(n) for n = 1..12:
 n      a(n)
--------------------------------
 1     5184 =  72^2 = 2^6  * 3^4
 2    11664 = 108^2 = 2^4  * 3^6
 3    40000 = 200^2 = 2^6  * 5^4
 4    82944 = 288^2 = 2^10 * 3^4
 5   153664 = 392^2 = 2^6  * 7^4
 6   186624 = 432^2 = 2^8  * 3^6
 7   250000 = 500^2 = 2^4  * 5^6
 8   373248 =  72^3 = 2^9  * 3^6
 9   419904 = 648^2 = 2^6  * 3^8
10   455625 = 675^2 = 3^6  * 5^4
11   640000 = 800^2 = 2^10 * 5^4
12   746496 = 864^2 = 2^10 * 3^6
		

Crossrefs

Programs

  • Mathematica
    nn = 2^24; mm = Sqrt[nn]; i = 1; k = 2; MapIndexed[Set[S[First[#2]], #1] &, Rest@ Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[mm, 3]}, {a, Sqrt[mm/b^3]}], GCD @@ FactorInteger[#][[;; , -1]] == 1 &]]; Union@ Reap[While[j = 2; While[S[i]^j < nn, Sow[S[i]^j]; j++]; j > 2, k++; i++] ][[-1, 1]]
  • Python
    from math import isqrt
    from sympy import integer_nthroot, mobius
    def A383394(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while f(kmin) < kmin: kmin >>= 1		
            kmin = max(kmin,kmax >> 1)
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x):
            c, l = squarefreepi(integer_nthroot(x,3)[0])+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))-1, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c += j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c-l
        def f(x): return n+x-sum(g(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length()))
        return bisection(f,n,n) # Chai Wah Wu, Aug 11 2025
Showing 1-2 of 2 results.