A126713 The triangle K referred to in A038200, read along rows.
1, -1, 1, 1, -3, 1, -1, 7, -4, 1, 1, -15, 10, -5, 1, -1, 31, -19, 15, -6, 1, 1, -63, 28, -35, 21, -7, 1, -1, 127, -28, 71, -56, 28, -8, 1, 1, -255, 1, -135, 126, -84, 36, -9, 1, -1, 511, 80, 255, -251, 210, -120, 45, -10, 1, 1, -1023, -242, -495, 451, -462, 330, -165, 55, -11, 1, -1, 2047, 485, 991, -726, 925, -792, 495, -220
Offset: 0
Examples
If the leftmost column of the triangle in A020921 is deleted we get 1 1 1 2 3 1 2 5 4 1 4 10 10 5 1 2 11 19 15 6 1 6 21 35 35 21 7 1 4 22 52 69 56 28 8 1 6 33 83 126 126 84 36 9 1 The present triangle is the inverse of this, namely 1 -1 1 1 -3 1 -1 7 -4 1 1 -15 10 -5 1 -1 31 -19 15 -6 1 1 -63 28 -35 21 -7 1 -1 127 -28 71 -56 28 -8 1 with row sums 1,0,-1,3,-8,21,-54,134,-318,720 of A038200.
Crossrefs
Cf. A039912.
Programs
-
Maple
A020921 := proc(n,k) option remember; local divs; if n <= 0 then 1; elif k > n then 0; else divs := numtheory[divisors](n); add(numtheory[mobius](op(i,divs))*binomial(n/op(i,divs),k),i=1..nops(divs)); fi; end: A020921t := proc(n,k) option remember; A020921(n+1,k+1); end: TriLInv := proc(nmax) local a,row,col; a := array(0..nmax,0..nmax); for row from 0 to nmax do for col from row+1 to nmax do a[row,col] := 0; od; od; for row from 0 to nmax do for col from row to 0 by -1 do if row <> col then a[row,col] := -add(a[row,c]*A020921t(c,col),c=col+1..row)/A020921t(col,col); else a[row,col] := (1-add(a[row,c]*A020921t(c,col),c=col+1..row))/A020921t(col,col); fi; od; od; RETURN(a); end: nmax := 12 : a := TriLInv(nmax) : for row from 0 to nmax do for col from 0 to row do printf("%d, ",a[row,col]); od; od:
-
Mathematica
f[n_] := (1/(1+x))*Sum[x^(k-1)/((1+x)^k-y*x^k), {k, 1, n+1}]; t[0, 0] = 1; t[n_, k_] := SeriesCoefficient[f[n], {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 13 2013, after Vladeta Jovovic *)
Formula
G.f.: (1/(1+x))*Sum(x^(k-1)/((1+x)^k-y*x^k),k=1..infinity). - Vladeta Jovovic, Feb 26 2008
Comments