A126718 a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digits 1,2,3, at least one of digits 4,5, at least one of digits 6,7 and at least one of digits 8,9.
7, 43, 235, 1171, 5467, 24403, 105595, 447091, 1864027, 7686163, 31440955, 127865011, 517788187, 2090186323, 8417944315, 33843570931, 135890057947, 545108340883, 2185079263675, 8754257900851, 35058860433307, 140360940805843, 561820285607035
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
Crossrefs
Programs
-
Magma
[8*4^n-12*3^n+6*2^n-1: n in [1..30]]; // Vincenzo Librandi, May 31 2011
-
Maple
a:=n->8*4^n-12*3^n+6*2^n-1;
-
Mathematica
LinearRecurrence[{10,-35,50,-24},{7, 43, 235, 1171},23] (* James C. McMahon, Dec 27 2024 *)
-
PARI
Vec(-x*(24*x^3-50*x^2+27*x-7) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015
Formula
a(n) = 8*4^n - 12*3^n + 6*2^n - 1.
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4). - Colin Barker, Feb 22 2015
G.f.: -x*(24*x^3 - 50*x^2 + 27*x - 7) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Feb 22 2015