cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126772 Padovan factorials: a(n) is the product of the first n terms of the Padovan sequence. Similar to the Fibonacci factorial.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 48, 240, 1680, 15120, 181440, 2903040, 60963840, 1706987520, 63158538240, 3094768373760, 201159944294400, 17299755209318400, 1972172093862297600, 297797986173206937600, 59559597234641387520000
Offset: 1

Views

Author

John Lien, Feb 17 2007

Keywords

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Sep 14 2010: (Start)
    A000931 := proc(n) option remember; if n = 0 then 1; elif n <=2 then 0; else procname(n-2)+procname(n-3) ; end if; end proc:
    A126772 := proc(n) mul( A000931(i),i=5..n+4) ; end proc: seq(A126772(n),n=1..40) ; (End)
  • Mathematica
    Rest[FoldList[Times,1,LinearRecurrence[{0,1,1},{1,1,1},30]]] (* Harvey P. Dale, Apr 29 2013 *)

Formula

a(n) ~ c * d^(n/2) * r^(n^2/2), where r = 1.324717957244746... (see A060006) is the root of the equation r^3 = r + 1, d = 0.393641282401116385386658448446561... is the root of the equation 1 + 7*d + 184*d^2 - 529*d^3 = 0, c = 1.25373683131537208838997864311903035079685338006712312402418098138010834953... (see A253924). - Vaclav Kotesovec, Jan 26 2015

Extensions

More terms from R. J. Mathar, Sep 14 2010