A126789 a(n) is the smallest number such that the product of its digits is n times the sum of its digits, or 0 if no such number exists.
1, 36, 66, 88, 257, 268, 279, 448, 369, 459, 0, 666, 0, 578, 579, 678, 0, 1689, 0, 2558, 789, 0, 0, 1899, 13557, 0, 999, 3477, 0, 2589, 0, 2688, 0, 0, 13578, 3489, 0, 0, 0, 3588, 0, 2799, 0, 0, 4569, 0, 0, 4668, 4677, 5568, 0, 0, 0, 3699, 0, 3789, 0, 0, 0, 4599, 0, 0
Offset: 1
Examples
a(2)=36 because 3*6/(3+6) = 2 and no number smaller than 36 has this property.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
This sequence is a subsequence of A061013 (Product of digits of n) is divisible by (sum of digits of n), where 0's are not permitted.
Programs
-
Maple
for n from 1 to 10 do b:=proc(k) local kk: kk:=convert(k,base,10): if product(kk[j],j=1..nops(kk))=n*sum(kk[j],j=1..nops(kk)) then k else fi end: a[n]:=[seq(b(k),k=1..1000)][1]: od: seq(a[n],n=1..10); # program works only for n from 1 to 10 Emeric Deutsch, Mar 07 2007
-
Mathematica
a[1] := 1; a[n_] := Module[{}, k = 0; If[FactorInteger[n][[ -1, 1]] < 8, k = 1; While[Times @@ IntegerDigits[k] != n*Plus @@ IntegerDigits[k], k++ ]]; k]; Table[a[i], {i, 1, 80}] (* Stefan Steinerberger, Jun 14 2007 *)
Extensions
More terms from Emeric Deutsch, Mar 07 2007
More terms from Stefan Steinerberger, Jun 14 2007
Comments