cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126812 Ramanujan numbers (A000594) read mod 4.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

References

  • D. B. Lahiri, On Ramanujan's function tau(n) and divisor function sigma_k(n), I, Bulletin of the Calcutta Mathematical Society, Vol. 38 (1946), pp. 193-206; II, ibid., Vol. 39 (1947), pp. 33-51.

Crossrefs

Programs

Formula

a(n) == n^2 * sigma_7(n) (mod 4) (Lahiri, 1946-1947). - Amiram Eldar, Jan 04 2025