cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A126840 Ramanujan numbers (A000594) read mod 11^2.

Original entry on oeis.org

1, 97, 10, 101, 111, 2, 75, 22, 97, 119, 34, 42, 37, 15, 21, 18, 20, 92, 110, 79, 24, 31, 76, 99, 73, 80, 93, 73, 99, 101, 73, 8, 98, 4, 97, 117, 102, 22, 7, 22, 113, 29, 27, 46, 119, 112, 85, 59, 19, 63, 79, 107, 5, 67, 23, 77, 11, 44, 82, 64, 23, 63, 15, 91, 114, 68, 59, 84, 34
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A126839 (mod 11^1), this sequence (mod 11^2), A126841 (mod 11^3).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 121]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 121; \\ Amiram Eldar, Jan 05 2025

A126841 Ramanujan numbers (A000594) read mod 11^3.

Original entry on oeis.org

1, 1307, 252, 1190, 837, 607, 559, 627, 823, 1208, 881, 405, 1247, 1225, 626, 865, 625, 213, 110, 442, 1113, 152, 1286, 946, 73, 685, 456, 1041, 1067, 948, 194, 855, 1066, 972, 702, 1085, 586, 22, 128, 385, 597, 1239, 269, 893, 724, 1080, 932, 1027, 1229, 910, 442
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2007

Keywords

Crossrefs

Cf. A000594, A126839 (mod 11^1), A126840 (mod 11^2), this sequence (mod 11^3).

Programs

  • Mathematica
    a[n_] := Mod[RamanujanTau[n], 1331]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
  • PARI
    a(n) = ramanujantau(n) % 1331; \\ Amiram Eldar, Jan 05 2025

A289633 a(n) = 6 * Sum_{d|n} d * A110163(d).

Original entry on oeis.org

-1440, 319680, -73733760, 17014849920, -3926422987200, 906079372542720, -209091033317387520, 48250806224270918400, -11134577434408058898720, 2569466177758810678838400, -592941804710481150566417280, 136829971461225574971638023680
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2017

Keywords

Examples

			G.f.: -1440*q + 319680*q^2 - 73733760*q^3 + 17014849920*q^4 - 3926422987200*q^5 + ...
a(1) = 6 * (1 * A110163(1)) = -1440,
a(2) = 6 * (1 * A110163(1) + 2 * A110163(2)) = 319680,
a(3) = 6 * (1 * A110163(1) + 3 * A110163(3)) = -73733760.
		

Crossrefs

Cf. A000594, A110163, A126839 (A000594(n) mod 11), A289636.

Formula

a(n) == A000594(n) mod 11.
a(n) ~ 6 * (-1)^n * exp(Pi*sqrt(3)*n). - Vaclav Kotesovec, Jul 09 2017
Showing 1-3 of 3 results.