cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A126859 Numerators of coefficients in quasimodular form F_3(q) of level 1 and weight 12.

Original entry on oeis.org

0, 0, 1, 20, 102, 2288, 3773, 14232, 133616, 119904, 584517, 1927900, 4013432, 2569296, 14394518, 8365192, 14426496, 23381600, 151885575, 58125708, 269849564, 395149888, 195967551, 828880856, 398774464, 544543680, 4586626939, 1018905048, 1396485648
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 2007

Keywords

Examples

			F_3(q) = (1/12)*q^2 + (20/3)*q^3 + 102*q^4 + (2288/3)*q^5 + 3773*q^6 + 14232*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    es[2]=1-24*Sum[DivisorSigma[1, n]*q^n, {n, 100}]; es[k_?EvenQ]/; k>2:=1-2*k/BernoulliB[k]*Sum[DivisorSigma[k-1, n]*q^n, {n, 100}]; Numerator[CoefficientList[(15*es[2]^4*es[4] - 6*es[2]^6-12*es[2]^2*es[4]^2 + 7*es[4]^3 + 4*es[2]^3*es[6] - 12*es[2]*es[4]*es[6] + 4*es[6]^2)/35831808, q]][[;; 30]] (* Shenghui Yang, Aug 06 2025 *)

Formula

F_3(q) = (15*E(2)^4*E(4) - 6*E(2)^6 - 12*E(2)^2*E(4)^2 + 7*E(4)^3 + 4*E(2)^3*E(6) - 12*E(2)*E(4)*E(6) + 4*E(6)^2)/35831808, where E(k) is the normalized Eisenstein series of weight k (cf. A006352, etc.).

A126860 Denominators of coefficients in quasimodular form F_3(q) of level 1 and weight 12.

Original entry on oeis.org

1, 1, 12, 3, 1, 3, 1, 1, 3, 1, 2, 3, 3, 1, 3, 1, 1, 1, 4, 1, 3, 3, 1, 3, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 1, 1, 3, 3, 1, 12, 1, 1, 1, 1, 1, 3, 3, 2, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 1, 3, 1, 1, 3, 1, 2, 3, 3, 1, 3, 1, 1, 1, 2, 1, 3, 3, 1, 3, 1, 1, 4, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 2007

Keywords

Examples

			F_3(q) = (1/12)*q^2 + (20/3)*q^3 + 102*q^4 + (2288/3)*q^5 + 3773*q^6 + 14232*q^7 + ...
		

Crossrefs

Formula

F_3(q) = (15*E(2)^4*E(4) - 6*E(2)^6 - 12*E(2)^2*E(4)^2 + 7*E(4)^3 + 4*E(2)^3*E(6) - 12*E(2)*E(4)*E(6) + 4*E(6)^2)/35831808, where E(k) is the normalized Eisenstein series of weight k (cf. A006352, etc.).

Extensions

More terms from Seiichi Manyama, May 18 2019
Showing 1-2 of 2 results.