cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126865 a(n) = gcd(Product_{p|n} (p+1)^b(p,n), Product_{p|n} (p-1)^b(p,n)), where the products are over the distinct primes, p, that divide n and p^b(p,n) is the highest power of p dividing n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 6, 8, 1, 2, 4, 2, 2, 4, 2, 2, 2, 4, 6, 8, 6, 2, 8, 2, 1, 4, 2, 24, 4, 2, 6, 8, 2, 2, 12, 2, 2, 16, 2, 2, 2, 4, 4, 8, 6, 2, 8, 8, 6, 4, 2, 2, 8, 2, 6, 8, 1, 12, 4, 2, 2, 4, 24, 2, 4, 2, 6, 16, 18, 12, 24, 2, 2, 16, 2, 2, 12, 4, 6, 8, 2, 2, 16, 8, 2, 4, 2, 24, 2, 2, 12, 8
Offset: 1

Views

Author

Leroy Quet, Mar 15 2007

Keywords

Comments

First occurrence of k or 0 if not possible (including all odd primes k): 2, 1, 0, 9, 0, 14, 0, 15, 0, 0, 0, 42, 0, 0, 0, 45, 0, 76, 0, 589, 0, 0, 0, 35, 0, 0, 0, 4381, 0, 0, ..., . - Robert G. Wilson v, Sep 08 2007

Examples

			400 = 2^4 * 5^2. So a(400) = gcd((2+1)^4 * (5+1)^2, (2-1)^4 * (5-1)^2) = gcd(2916, 16) = 4.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{fi = FactorInteger@n}, GCD[Times @@ ((First /@ fi - 1)^Last /@ fi), Times @@ ((First /@ fi + 1)^Last /@ fi)]]; Array[f, 99] (* Robert G. Wilson v, Sep 08 2007 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A126865(n) = gcd(A003958(n),A003959(n)); \\ Antti Karttunen, Dec 17 2018

Formula

From Antti Karttunen, Dec 17 2018: (Start)
a(n) = gcd(A003958(n), A003959(n)).
a(A007947(n)) = A066086(n).
(End)

Extensions

More terms from Robert G. Wilson v, Sep 08 2007