A126892 a(n) = row of Wythoff's array T(n,j) containing the sequence of values T(n,j-1) + T(n,j+1).
1, 15, 8, 12, 44, 19, 62, 26, 30, 91, 37, 109, 120, 48, 138, 55, 59, 167, 66, 185, 73, 77, 214, 84, 88, 243, 95, 261, 102, 106, 290, 113, 308, 319, 124, 337, 131, 135, 366, 142, 384, 149, 153, 413, 160, 431, 442, 171, 460, 178, 182, 489, 189, 507, 196, 200
Offset: 0
Keywords
Examples
a(2)=8 because the sequence of sums T(2,j-1)+T(2,j+1) begins with 6+16=22=T(8,0) and 10+26=36=T(8,1). a(1)=15 because the sequence of sums T(1,j-1)+T(1,j+1) begins with 4+11=15, 7+18=25, 11+29=40=T(15,0) and 18+47=65=T(15,1).
Programs
-
Mathematica
T[i_,j_]:=i*Fibonacci[j+1]+Fibonacci[j+2]*Floor[(i+1)(1+Sqrt[5])/2]; U[i_,j_]:=T[i,j-1]+T[i,j+1]; Tpair[i_,j_]:={T[i,j],T[i,j+1]}; Upair[i_,j_]:={U[i,j],U[i,j+1]}; a[n_]:=a[n]=Module[{v},For[v=0,True,v++,If[Upair[n,1]==Tpair[v,0]||Upair[n,3]==Tpair[v,0],Return[v]]]]
Formula
Conjecture: If the Zeckendorf representation of n ends in 1, then a(n) = 15 + H(n-H(n))*29 + (n-H(n) - H(n-H(n)))*18, where H(n) is Hofstadter's G sequence A005206. Otherwise, a(n) = 1 + H(H(n))*7 + (H(n) - H(H(n)))*4 unless the Zeckendorf representation of n has one of the 0-endings listed in the first comment line, in which case a(n) = a(n+1) - 11.
Extensions
Edited by Dean Hickerson, Feb 09 2007
Comments