A126910 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^11 is prime.
1, 2, 3, 35, 48, 77, 97, 105, 111, 112, 122, 128, 161, 168, 175, 216, 231, 255, 271, 276, 297, 338, 361, 370, 378, 422, 485, 513, 525, 558, 622, 658, 661, 662, 667, 675, 700, 718, 725, 742, 753, 766, 770, 795, 796, 833, 875, 886, 921, 993, 1027, 1066, 1078
Offset: 1
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^11], AppendTo[a, n]], {n, 1, 1400}]; a
-
PARI
is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^11) \\ Charles R Greathouse IV, Jun 13 2017