cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126911 Numbers k such that 1 + k^2 + k^4 + k^6 + k^8 + k^10 + k^12 + k^13 is prime.

Original entry on oeis.org

10, 24, 60, 148, 174, 180, 268, 274, 280, 294, 346, 472, 484, 516, 522, 598, 654, 804, 834, 856, 858, 898, 994, 1012, 1036, 1054, 1066, 1102, 1168, 1272, 1294, 1338, 1342, 1368, 1420, 1462, 1500, 1536, 1564, 1588, 1608, 1624, 1710, 1746, 1786, 1792, 1822, 1992
Offset: 1

Views

Author

Artur Jasinski, Dec 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[1 + n^2 + n^4 + n^6 + n^8 + n^10 + n^12 + n^13], AppendTo[a, n]], {n, 1, 1400}]; a
  • PARI
    is(n)=isprime(1+n^2+n^4+n^6+n^8+n^10+n^12+n^13) \\ Charles R Greathouse IV, Jun 13 2017
    
  • Python
    from sympy import isprime
    def ok(k): return isprime(1+sum(k**i for i in [2, 4, 6, 8, 10, 12, 13]))
    print([k for k in range(2000) if ok(k)]) # Michael S. Branicky, Oct 24 2021