A126931 a(n) = A127359(n+1)/2 - A127359(n).
1, 3, 10, 33, 110, 366, 1220, 4065, 13550, 45162, 150540, 501786, 1672620, 5575356, 18584520, 61948257, 206494190, 688313490, 2294378300, 7647926046, 25493086820, 84976950468, 283256501560, 944188318938, 3147294396460
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1912
- Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
Crossrefs
Cf. A127359.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(1 - 6*x + Sqrt(1-4*x^2)) )); // G. C. Greubel, Jan 29 2020 -
Maple
A127359 := proc(n) add(binomial(n,floor(k/2))*3^(n-k), k=0..n) ; end proc: A126931 := proc(n) A127359(n+1)/2-A127359(n) ; end proc: seq(A126931(n),n=0..50) ; # R. J. Mathar, Mar 25 2010
-
Mathematica
With[{s = Partition[#, 2, 1] &@ Array[Sum[Binomial[#, Floor[k/2]]*3^(# - k), {k, 0, #}] &, 26, 0]}, Map[#2/2 - #1 & @@ # &, s]] (* Michael De Vlieger, Dec 15 2019 *) CoefficientList[Series[2/(1-6*x+Sqrt[1-4*x^2]), {x,0,30}], x] (* G. C. Greubel, Jan 29 2020 *)
-
PARI
my(x='x+O('x^30)); Vec( 2/(1 - 6*x + sqrt(1-4*x^2)) ) \\ G. C. Greubel, Jan 29 2020
-
Sage
def A126931_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 2/(1 - 6*x + sqrt(1-4*x^2)) ).list() A126931_list(30) # G. C. Greubel, Jan 29 2020
Formula
G.f.: 1/(1-3x-x^2/(1-x^2/(1-x^2/(1-x^2/(1-... (continued fraction). - Paul Barry, Mar 10 2009
G.f.: 2/(1 - 6*x + sqrt(1-4*x^2)). - Emeric Deutsch, May 02 2011
Conjecture: 3*(n+1)*a(n) +10*(-n-1)*a(n-1) +12*(-n+2)*a(n-2) +40*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 26 2012
Extensions
More terms from R. J. Mathar, Mar 25 2010
Comments