cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A335183 T(n,k) = Sum_{j=1..n} 2^j*binomial(2*n-2*j, n-j)*binomial(n+j, n)*binomial(j, k), triangle read by rows (n >= 0 and 0 <= k <= n).

Original entry on oeis.org

0, 4, 4, 36, 60, 24, 288, 688, 560, 160, 2240, 7080, 8760, 5040, 1120, 17304, 68712, 114576, 99456, 44352, 8064, 133672, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1034880, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720, 439296
Offset: 0

Views

Author

Petros Hadjicostas, May 25 2020

Keywords

Comments

This was the original version of A126936.

Examples

			Table T(n,k) (with rows n >= 0 and columns k = 0..n) begins as follows:
       0;
       4,      4;
      36,     60,      24;
     288,    688,     560,     160;
    2240,   7080,    8760,    5040,    1120;
   17304,  68712,  114576,   99456,   44352,   8064;
  133672, 642824, 1351840, 1572480, 1055040, 384384, 59136;
  ...
		

Crossrefs

Cf. A000984, A067001, A069722 (main diagonal), A126936.

Programs

  • Mathematica
    t[l_, m_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, 1, m}]; Table[t[l, m], {m, 0, 7}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014 from the original version of A126936 *)
  • PARI
    T(n,k) = sum(j=1, n, 2^j*binomial(2*n-2*j, n-j)*binomial(n+j, n)*binomial(j, k));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n,k), ", "); ); print(); ); }

Formula

T(n,n) = A069722(n+1) for n >= 0.
T(n,k) = A126936(n,k) = A067001(n,n-k) for n >= k >= 1.
T(n,0) = A126936(n,0) - binomial(2*n, n) = A067001(n,n) - A000984(n) for n >= 0.
Bivariate o.g.f.: Sum_{n,k >= 0} T(n,k)*x^n*y^k = -1/sqrt(1 - 4*x) + sqrt((1 + y)/(1 - 8*x*(1 + y))/(y + sqrt(1 - 8*x*(1 + y)))).
Showing 1-1 of 1 results.