A126954 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1.
1, 3, 1, 10, 4, 1, 34, 15, 5, 1, 117, 54, 21, 6, 1, 405, 192, 81, 28, 7, 1, 1407, 678, 301, 116, 36, 8, 1, 4899, 2386, 1095, 453, 160, 45, 9, 1, 17083, 8380, 3934, 1708, 658, 214, 55, 10, 1, 59629, 29397, 14022, 6300, 2580, 927, 279, 66, 11, 1
Offset: 0
Examples
Triangle begins: 1; 3, 1; 10, 4, 1; 34, 15, 5, 1; 117, 54, 21, 6, 1; 405, 192, 81, 28, 7, 1; 1407, 678, 301, 116, 36, 8, 1; 4899, 2386, 1095, 453, 160, 45, 9, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
Formula
Sum_{k=0..n} T(n,k) = A126932(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A059738(m+n).
Sum_{k=0..n} T(n,k)*(-k+1) = 3^n. - Philippe Deléham, Mar 26 2007
Comments