cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A127145 Q(3,n), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

1, 1, 1, -2, -9, 4, 75, 24, -735, -816, 8505, 17760, -114345, -388800, 1756755, 9233280, -30405375, -242968320, 585810225, 7125511680, -12439852425, -232838323200, 288735522075, 8450546227200, -7273385294175, -339004760371200, 197646339515625, 14945696794828800, -5763367260275625
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

Cf. A126965.
Column 3 of A127080.

Programs

  • Maple
    Q:= proc(n, k) option remember;
          if k<2 then 1
        elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
          fi; end;
    seq( Q(3, n), n=0..30); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[3, k], {k,0,30}] (* G. C. Greubel, Jan 30 2020 *)
  • Sage
    @CachedFunction
    def Q(n,k):
        if (k<2): return 1
        elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
    [Q(3,n) for n in (0..30)] # G. C. Greubel, Jan 30 2020

Formula

See A127080 for e.g.f.
Showing 1-1 of 1 results.