cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126966 Expansion of sqrt(1 - 4*x)/(1 - 2*x).

Original entry on oeis.org

1, 0, -2, -8, -26, -80, -244, -752, -2362, -7584, -24892, -83376, -284324, -984672, -3455144, -12259168, -43908026, -158531392, -576352364, -2107982128, -7750490636, -28629222112, -106190978264, -395347083808, -1476813394916, -5533435084480, -20790762971864, -78316232088032
Offset: 0

Views

Author

N. J. A. Sloane, Mar 22 2007

Keywords

Comments

Hankel transform is 2^n*(-1)^binomial(n+1, 2) = A120617(n). - Paul Barry, Feb 08 2008

Crossrefs

Programs

  • GAP
    List([0..30], n-> (-1)*Sum([0..n], j-> 2^j*Binomial(2*(n-j), n-j)/(2*(n-j) -1) )); # G. C. Greubel, Jan 29 2020
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)/(1-2*x) )); // G. C. Greubel, Jan 29 2020
    
  • Maple
    a := n -> -add(2^j*binomial(2*n-2*j,n-j)/(2*n-2*j-1), j=0..n):
    seq(a(n),n=0..30); # Emeric Deutsch, Mar 25 2007
    # second Maple program:
    CatalanNumber := n -> binomial(2*n, n)/(n+1):
    a := n -> 2^n*I + CatalanNumber(n)*simplify(hypergeom([1, n + 1/2], [n + 2], 2)):
    seq(a(n), n=0..26); # Peter Luschny, Aug 04 2020
    # third program:
    A126966 := n -> 2*binomial(2*n, n) - add(2^(n-k)*binomial(2*k,k), k=0..n):
    seq(A126966(n), n = 0 .. 27); # Mélika Tebni, Mar 08 2024
  • Mathematica
    CoefficientList[Series[Sqrt[1-4*x]/(1-2*x), {x,0,30}], x] (* G. C. Greubel, Jan 31 2017 *)
  • PARI
    Vec(sqrt(1-4*x)/(1-2*x) + O(x^30)) \\ G. C. Greubel, Jan 31 2017
    
  • Sage
    def A126966_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( sqrt(1-4*x)/(1-2*x) ).list()
    A126966_list(30) # G. C. Greubel, Jan 29 2020
    

Formula

a(n) = -Sum_{j=0..n} ( 2^j*binomial(2n-2j, n-j)/(2n-2j-1) ). - Emeric Deutsch, Mar 25 2007
D-finite with recurrence: n*a(n) + 6*(1-n)*a(n-1) + 4*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011, corrected Feb 17 2020
a(n) ~ -4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
a(n) = 2^n*i + CatalanNumber(n)*hypergeom([1, n + 1/2], [n + 2], 2). - Peter Luschny, Aug 04 2020
a(n) = A028329(n) - A082590(n). - Mélika Tebni, Mar 08 2024