A126970 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
1, 0, 1, 1, 3, 1, 3, 11, 6, 1, 11, 42, 30, 9, 1, 42, 167, 141, 58, 12, 1, 167, 684, 648, 327, 95, 15, 1, 684, 2867, 2955, 1724, 627, 141, 18, 1, 2867, 12240, 13456, 8754, 3746, 1068, 196, 21, 1, 12240, 53043, 61362, 43464, 21060, 7146, 1677, 260, 24, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 1, 3, 1; 3, 11, 6, 1; 11, 42, 30, 9, 1; 42, 167, 141, 58, 12, 1; 167, 684, 648, 327, 95, 15, 1; ... From _Philippe Deléham_, Nov 07 2011: (Start) Production matrix begins: 0, 1 1, 3, 1 0, 1, 3, 1 0, 0, 1, 3, 1 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 0, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
Formula
Sum_{k=0..n} T(n,k) = A126952(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A117641(m+n).
Sum_{k=0..n} T(n,k)*(4*k+1) = 5^n. - Philippe Deléham, Mar 22 2007
Comments