A127024 Let f(n) = exp(Pi*sqrt(n)); sequence gives numbers n such that ceiling(f(n)) - f(n) < 1/10^5.
58, 67, 163, 232, 1467, 4075, 343732, 357711, 478233, 486396, 881967, 1003957, 1033466, 1045512, 1053883, 1091706, 1208198, 1240173, 1341615, 1844122, 1878006, 1964724, 2177184, 2259143, 2276046, 2279335, 2488542, 2691364, 2850458, 3157407, 3262163, 3310971
Offset: 1
Keywords
References
- J.-P. Serre, "Lectures on the Mordell-Weil theorem".
Links
- Anthony Canu, Table of n, a(n) for n = 1..50
Programs
-
Mathematica
a = {}; Do[If[(1 - (Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]]) > 0) && (1 - ( Exp[Pi Sqrt[x]] - Floor[Exp[Pi Sqrt[x]]])< 10^(-5)), AppendTo[a, x]], {x, 1, 1000}]; a
Extensions
a(6)-a(32) from Jon E. Schoenfield, Sep 04 2017