cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127043 Primes p such that denominator of Sum_{k=1..p-1} 1/k^2 is not a square.

Original entry on oeis.org

11, 13, 23, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
Offset: 1

Views

Author

Artur Jasinski, Jan 03 2007

Keywords

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      S:= S + 1/k^2;
      if isprime(k+1) and not issqr(denom(S)) then
           R:= R,k+1; count:= count+1;
      fi
    od:
    R; # Robert Israel, Oct 25 2019
  • Mathematica
    a = {}; Do[If[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]] == Floor[Sqrt[Denominator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]]], 1,AppendTo[a, Prime[x]]], {x, 1, 50}]; a

Extensions

More terms from Robert Israel, Oct 25 2019