A127045 Primes p such that denominator of Sum_{k=1..p-1} 1/k^9 is a 9th power.
2, 3, 5, 11, 13, 17, 29, 31, 37, 97, 127, 131, 251, 257, 263, 293, 431, 433, 439, 443, 449, 457, 461, 463, 467, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3797, 3803, 3821, 3823, 3833, 3907, 3911, 3917
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^9; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/9)], AppendTo[a, i + 1]]]]; a] d[2000] Select[Flatten[Position[Denominator[Accumulate[1/Range[4000]^9]],?(IntegerQ[ Surd[ #,9]]&)]]+1,PrimeQ] (* _Harvey P. Dale, Aug 06 2022 *)