A127052 Primes p such that denominator of Sum_{k=1..p-1} 1/k^8 is an eighth power.
2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 53, 67, 71, 73, 97, 101, 127, 131, 197, 199, 211, 251, 367, 373, 379, 773, 787, 797, 809, 811, 1373, 1433, 1439, 2027, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^8; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/8)], AppendTo[a, i + 1]]]]; a]; d[2000]