A378417 a(n) is the least k such that A127064(k) = n.
0, 1, 2, 3, 4, 17, 24, 62, 68, 162, 169, 176, 183, 188, 369, 694, 897, 988, 1027, 4183, 5510, 6063, 6341, 6444, 6465, 25787, 32844, 37722, 38811, 39450, 151679, 200946, 226703, 240056, 248947, 430398, 612633, 633473, 635344, 637227, 637237, 637256, 637306, 1095790, 1353912, 1554970, 7045573
Offset: 1
Keywords
Examples
a(6) = 17 because 5 iterations of A004648 starting at 17 result in 0, and every k < 17 requires fewer iterations: prime(17) (mod 17) = 59 (mod 17) = 8 prime(8) (mod 8) = 19 (mod 8) = 3 prime(3) (mod 3) = 5 (mod 3) = 2 prime(2) (mod 2) = 3 (mod 2) = 1 prime(1) (mod 1) = 2 (mod 1) = 0.
Programs
-
Maple
P:= select(isprime, [2,seq(i,i=3..10^8,2)]): nP:= nops(P): V:= Array(0..nP): count:= 0: R[1]:= 0: for n from 1 to nP do V[n]:= V[P[n] mod n]+1; if V[n] > count then count:= count+1; R[count]:= n fi; od: seq(R[i],i=1..count);
Formula
A127064(a(n)) = n.
Comments