A127094 Triangle, reversal of A127093.
1, 2, 1, 3, 0, 1, 4, 0, 2, 1, 5, 0, 0, 0, 1, 6, 0, 0, 3, 2, 1, 7, 0, 0, 0, 0, 0, 1, 8, 0, 0, 0, 4, 0, 2, 1, 9, 0, 0, 0, 0, 0, 3, 0, 1, 10, 0, 0, 0, 0, 5, 0, 0, 2, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 2, 1; 3, 0, 1; 4, 0, 2, 1; 5, 0, 0, 0, 1; 6, 0, 0, 3, 2, 1; ...
Links
- G. C. Greubel, Rows n = 1..30 of the triangle, flattened
Programs
-
Magma
[n mod (k-n-1) - (n+1) mod (k-n-1) + 1: k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 08 2021
-
Mathematica
Table[Mod[n, k-n-1] - Mod[n+1, k-n-1] +1, {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 08 2021 *)
-
Sage
flatten([[n%(k-n-1) - (n+1)%(k-n-1) + 1 for k in [1..n]] for n in [1..12]]) # G. C. Greubel, Mar 08 2021
Formula
Reversed rows of A127093.
T(n, K) = mod(n, k-n-1) - mod(n+1, k-n-1) + 1. - Mats Granvik, Sep 02 2007