A127144 Q(2,n), where Q(m,k) is defined in A127080 and A127137.
1, 1, 0, -3, -4, 15, 48, -105, -624, 945, 9600, -10395, -175680, 135135, 3790080, -2027025, -95235840, 34459425, 2752081920, -654729075, -90328089600, 13749310575, 3328103116800, -316234143225, -136191650918400, 7905853580625, 6131573025177600, -213458046676875, -301213549769932800
Offset: 0
Keywords
References
- V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Programs
-
Maple
Q:= proc(n, k) option remember; if k<2 then 1 elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2) else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n fi; end; seq( Q(2, n), n=0..30); # G. C. Greubel, Jan 30 2020
-
Mathematica
Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[2, k], {k,0,30}] (* G. C. Greubel, Jan 30 2020 *)
-
Sage
@CachedFunction def Q(n,k): if (k<2): return 1 elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2) else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n [Q(2,n) for n in (0..30)] # G. C. Greubel, Jan 30 2020
Formula
See A127080 for e.g.f.