cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127144 Q(2,n), where Q(m,k) is defined in A127080 and A127137.

Original entry on oeis.org

1, 1, 0, -3, -4, 15, 48, -105, -624, 945, 9600, -10395, -175680, 135135, 3790080, -2027025, -95235840, 34459425, 2752081920, -654729075, -90328089600, 13749310575, 3328103116800, -316234143225, -136191650918400, 7905853580625, 6131573025177600, -213458046676875, -301213549769932800
Offset: 0

Views

Author

N. J. A. Sloane, Mar 24 2007

Keywords

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

A126967 interleaved with A001147.
Column 2 of A127080.

Programs

  • Maple
    Q:= proc(n, k) option remember;
          if k<2 then 1
        elif `mod`(k,2)=0 then (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
          fi; end;
    seq( Q(2, n), n=0..30); # G. C. Greubel, Jan 30 2020
  • Mathematica
    Q[n_, k_]:= Q[n, k]= If[k<2, 1, If[EvenQ[k], (n-k+1)*Q[n+1, k-1] - (k-1)*Q[n + 2, k-2], ((n-k+1)*Q[n+1, k-1] - (k-1)*(n+1)*Q[n+2, k-2])/n]]; Table[Q[2, k], {k,0,30}] (* G. C. Greubel, Jan 30 2020 *)
  • Sage
    @CachedFunction
    def Q(n,k):
        if (k<2): return 1
        elif (mod(k,2)==0): return (n-k+1)*Q(n+1,k-1) - (k-1)*Q(n+2,k-2)
        else: return ( (n-k+1)*Q(n+1,k-1) - (k-1)*(n+1)*Q(n+2,k-2) )/n
    [Q(2,n) for n in (0..30)] # G. C. Greubel, Jan 30 2020

Formula

See A127080 for e.g.f.