A127159 Triangle T(n,k) with T(n,k) = A061554(n,k) + A107430(n,k).
2, 2, 2, 3, 2, 3, 4, 4, 4, 4, 7, 5, 8, 5, 7, 11, 11, 10, 10, 11, 11, 21, 16, 21, 12, 21, 16, 21, 36, 36, 28, 28, 28, 28, 36, 36, 71, 57, 64, 36, 56, 36, 64, 57, 71, 127, 127, 93, 93, 72, 72, 93, 93, 127, 127, 253, 211, 220, 130, 165, 90, 165, 130, 220, 211, 253
Offset: 0
Examples
Triangle begins: 2; 2, 2; 3, 2, 3; 4, 4, 4, 4; 7, 5, 8, 5, 7; 11, 11, 10, 10, 11, 11; 21, 16, 21, 12, 21, 16, 21; 36, 36, 28, 28, 28, 28, 36, 36; 71, 57, 64, 36, 56, 36, 64, 57, 71; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n, Int((n+1 -(-1)^(n-k)*(k+1))/2)) + Binomial(n, Int(k/2)) ))); # G. C. Greubel, Jan 31 2020
-
Magma
[Binomial(n, Floor((n+1 -(-1)^(n-k)*(k+1))/2)) + Binomial(n, Floor(k/2)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 31 2020
-
Maple
seq(seq( binomial(n, floor((n+1-(-1)^(n-k)*(k+1))/2)) +binomial(n, floor(k/2)), k=0..n), n=0..12); # G. C. Greubel, Jan 31 2020
-
Mathematica
T[n_, k_]= Binomial[n, Floor[(n+1 -(-1)^(n-k)*(k+1))/2]] + Binomial[n, Floor[k/2]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 31 2020 *)
-
PARI
T(n,k) = binomial(n, (n+1 -(-1)^(n-k)*(k+1))\2 ) + binomial(n, k\2); \\ G. C. Greubel, Jan 31 2020
-
Sage
[[binomial(n, floor((n+1 -(-1)^(n-k)*(k+1))/2)) + binomial(n, floor(k/2)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 31 2020
Formula
Sum_{k=0..n} T(n,k) = 2^(n+1).
T(n, k) = binomial(n, floor((n+1 - (-1)^(n-k)*(k+1))/2)) + binomial(n, floor(k/2)). - G. C. Greubel, Jan 31 2020