cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127159 Triangle T(n,k) with T(n,k) = A061554(n,k) + A107430(n,k).

Original entry on oeis.org

2, 2, 2, 3, 2, 3, 4, 4, 4, 4, 7, 5, 8, 5, 7, 11, 11, 10, 10, 11, 11, 21, 16, 21, 12, 21, 16, 21, 36, 36, 28, 28, 28, 28, 36, 36, 71, 57, 64, 36, 56, 36, 64, 57, 71, 127, 127, 93, 93, 72, 72, 93, 93, 127, 127, 253, 211, 220, 130, 165, 90, 165, 130, 220, 211, 253
Offset: 0

Views

Author

Philippe Deléham, Mar 25 2007

Keywords

Examples

			Triangle begins:
   2;
   2,  2;
   3,  2,  3;
   4,  4,  4,  4;
   7,  5,  8,  5,  7;
  11, 11, 10, 10, 11, 11;
  21, 16, 21, 12, 21, 16, 21;
  36, 36, 28, 28, 28, 28, 36, 36;
  71, 57, 64, 36, 56, 36, 64, 57, 71; ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n, Int((n+1 -(-1)^(n-k)*(k+1))/2)) + Binomial(n, Int(k/2)) ))); # G. C. Greubel, Jan 31 2020
  • Magma
    [Binomial(n, Floor((n+1 -(-1)^(n-k)*(k+1))/2)) + Binomial(n, Floor(k/2)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 31 2020
    
  • Maple
    seq(seq( binomial(n, floor((n+1-(-1)^(n-k)*(k+1))/2)) +binomial(n, floor(k/2)), k=0..n), n=0..12); # G. C. Greubel, Jan 31 2020
  • Mathematica
    T[n_, k_]= Binomial[n, Floor[(n+1 -(-1)^(n-k)*(k+1))/2]] + Binomial[n, Floor[k/2]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    T(n,k) = binomial(n, (n+1 -(-1)^(n-k)*(k+1))\2 ) + binomial(n, k\2); \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    [[binomial(n, floor((n+1 -(-1)^(n-k)*(k+1))/2)) + binomial(n, floor(k/2)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 31 2020
    

Formula

Sum_{k=0..n} T(n,k) = 2^(n+1).
T(n, k) = binomial(n, floor((n+1 - (-1)^(n-k)*(k+1))/2)) + binomial(n, floor(k/2)). - G. C. Greubel, Jan 31 2020