cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127160 Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,2,3,4,5,6,...] DELTA [1,1,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 3, 7, 5, 0, 15, 39, 37, 14, 0, 105, 296, 326, 176, 42, 0, 945, 2838, 3458, 2228, 794, 132, 0, 10395, 32859, 43191, 31235, 13553, 3473, 429, 0, 135135, 445767, 622259, 489899, 241225, 76417, 14893, 1430
Offset: 0

Views

Author

Philippe Deléham, Mar 25 2007

Keywords

Comments

This triangle enumerates fixed-point-free involutions in S_n by number of left-to-right maxima. For instance there are 15 fixed point free involutions on 6 elements: 3 have 1 left to right maxima, namely (1,6)(2,3)(4,5), (1,6)(2,4)(3,5) and (3,6)(2,5)(3,4); 7 have 2 left-to right maxima and 5 have 3 left to right maxima. - Robert Cori (rcori(AT)cs.brown.edu), Apr 25 2008
A053979*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 06 2012

Examples

			Triangle begins:
1;
0, 1;
0, 1, 2;
0, 3, 7, 5;
0, 15, 39, 37, 14;
0, 105, 296, 326, 176, 42;
0, 945, 2838, 3458, 2228, 794, 132;
0, 10395, 32859, 43191, 31235, 13553, 3473, 429;
0, 135135, 445767, 622259, 489899, 241225, 76417, 14893, 1430;
		

Crossrefs

Programs

  • Mathematica
    nmax = 8;
    DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k + 1]] + y s[[k + 1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[ p[n, 0], x^(n - k) y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
    DELTA[Range[0, nmax], Table[1, {nmax+1}], nmax] // Flatten (* Jean-François Alcover, Nov 12 2019 *)

Formula

Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000108(n), A001147(n), A128709(n) for x = -1,0,1,2 respectively.
From Peter Bala, Dec 22 2011: (Start)
The o.g.f. in the form G(x,t) = x/(1 - t*x^2/(1 - (t+1)*x^2/(1 - (t+2)*x^2/(1 - (t+3)*x^2/(1 - ... ))))) = x + t*x^3 + (t+2*t^2)*x^5 + ... satisfies the Riccati differential equation (1 - (t-1)*x*G)*G = x + x^3*dG/dx. Writing G(x,t) = sum {n = 1..inf} R(n,t)*x^(2*n-1), the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) = (2*n-1)*R(n,t) + (t-1)*sum {k = 1..n} R(k,t)*R(n+1-k,t) with initial condition R(1,t) = 1.
G(x,t+1) = x + (1+t)*x^3 + (3+5*t+2*t^2)*x^5 + ... is an o.g.f. for A053979.
(End)

Extensions

Corrected and extended by Peter Bala, Dec 20 2011