A127160 Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,2,3,4,5,6,...] DELTA [1,1,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 2, 0, 3, 7, 5, 0, 15, 39, 37, 14, 0, 105, 296, 326, 176, 42, 0, 945, 2838, 3458, 2228, 794, 132, 0, 10395, 32859, 43191, 31235, 13553, 3473, 429, 0, 135135, 445767, 622259, 489899, 241225, 76417, 14893, 1430
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 3, 7, 5; 0, 15, 39, 37, 14; 0, 105, 296, 326, 176, 42; 0, 945, 2838, 3458, 2228, 794, 132; 0, 10395, 32859, 43191, 31235, 13553, 3473, 429; 0, 135135, 445767, 622259, 489899, 241225, 76417, 14893, 1430;
Crossrefs
Programs
-
Mathematica
nmax = 8; DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x r[[k + 1]] + y s[[k + 1]]; p[0, ] = 1; p[, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k] p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[ p[n, 0], x^(n - k) y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]]; DELTA[Range[0, nmax], Table[1, {nmax+1}], nmax] // Flatten (* Jean-François Alcover, Nov 12 2019 *)
Formula
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000108(n), A001147(n), A128709(n) for x = -1,0,1,2 respectively.
From Peter Bala, Dec 22 2011: (Start)
The o.g.f. in the form G(x,t) = x/(1 - t*x^2/(1 - (t+1)*x^2/(1 - (t+2)*x^2/(1 - (t+3)*x^2/(1 - ... ))))) = x + t*x^3 + (t+2*t^2)*x^5 + ... satisfies the Riccati differential equation (1 - (t-1)*x*G)*G = x + x^3*dG/dx. Writing G(x,t) = sum {n = 1..inf} R(n,t)*x^(2*n-1), the row generating polynomials R(n,t) satisfy the recurrence R(n+1,t) = (2*n-1)*R(n,t) + (t-1)*sum {k = 1..n} R(k,t)*R(n+1-k,t) with initial condition R(1,t) = 1.
G(x,t+1) = x + (1+t)*x^3 + (3+5*t+2*t^2)*x^5 + ... is an o.g.f. for A053979.
(End)
Extensions
Corrected and extended by Peter Bala, Dec 20 2011
Comments