A127162 Composite numbers whose aliquot sequences terminate by encountering a prime number.
4, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99
Offset: 1
Keywords
Examples
a(5)=12 because the fifth composite number whose aliquot sequence terminates by encountering a prime as a member of its trajectory is 12. The complete aliquot sequence generated by iterating the proper divisors of 12 is 12->16->15->9->4->3->1->0
References
- Benito, Manuel; Creyaufmueller, Wolfgang; Varona, Juan Luis; and Zimmermann, Paul; Aliquot Sequence 3630 Ends After Reaching 100 Digits; Experimental Mathematics, Vol. 11, No. 2, Natick, MA, 2002, pp. 201-206.
Links
- Manuel Benito and Juan L. Varona, Advances In Aliquot Sequences, Mathematics of Computation, Vol. 68, No. 225, (1999), pp. 389-393.
- Wolfgang Creyaufmueller, Aliquot sequences.
Crossrefs
Programs
-
Mathematica
s[n_] := DivisorSigma[1, n] - n; g[n_] := If[n > 0, s[n], 0]; Trajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[2, 275], ! PrimeQ[ # ] && Last[Trajectory[ # ]] == 0 &]
Formula
Define s(i)=sigma(i)-i=A000203(i)-i. Then if i is composite and the aliquot sequence obtained by repeatedly applying the mapping i->s(i) contains a prime as a member of its trajectory, i is included in this sequence.