A127251 Inverse of number triangle A127249.
1, -2, 1, 2, -2, 1, 0, 0, 0, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 2, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
Triangle begins: 1; -2, 1; 2, -2, 1; 0, 0, 0, 1; 0, 0, 0, -2, 1; 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, -2, 1; 0, 0, 0, 0, 0, 0, 2, -2, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
Programs
-
Mathematica
T1[n_, k_] := SeriesCoefficient[(1 - ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; (* A127248 *) T2[n_, k_] := (-1)^(n-k) * Product[ThueMorse[i], {i, k+1, n}]; (* A127244 *) T[n_, k_] := Sum[T2[n, j]*T1[j, k], {j, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)
Extensions
More terms from Amiram Eldar, Aug 04 2023