cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127249 A product of Thue-Morse related triangles.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 10 2007

Keywords

Examples

			Triangle begins:
  1;
  2, 1;
  2, 2, 1;
  0, 0, 0, 1;
  0, 0, 0, 2, 1;
  0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 2, 1;
  0, 0, 0, 0, 0, 0, 2, 2, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Product of A127243 with A127247.
Inverse A127251 is given by (-1)^(n+k)T(n,k).

Programs

  • Mathematica
    T1[n_, k_] := SeriesCoefficient[(1 + ThueMorse[1 + k]*x)*x^k, {x, 0, n}]; (* A127243 *)
    T2[n_, k_] := Product[ThueMorse[i], {i, k + 1, n}]; (* A127247 *)
    T[n_, k_] := Sum[T2[n, j]*T1[j, k], {j, 0, n}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 04 2023 *)

Extensions

More terms from Amiram Eldar, Aug 04 2023

A127252 Sequence composed of 1 and -1 with the -1's occurring at odious indexed positions given by A091855.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1
Offset: 0

Views

Author

Paul Barry, Jan 10 2007

Keywords

Crossrefs

Row sums of A127251.
Partial sums are A127255.

Programs

  • Mathematica
    a[n_] := If[EvenQ[IntegerExponent[n, 2]] && OddQ[DigitCount[n, 2, 1]], -1, 1]; Array[a, 100, 0] (* Amiram Eldar, Aug 04 2023 *)

Extensions

More terms from Amiram Eldar, Aug 04 2023
Showing 1-2 of 2 results.