cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A074683 Permutation of natural numbers induced by the Catalan Automorphism *A074683 acting on parenthesizations as encoded and ordered by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 8, 5, 4, 17, 16, 18, 15, 14, 20, 19, 22, 12, 11, 21, 13, 10, 9, 45, 44, 46, 43, 42, 48, 47, 50, 40, 39, 49, 41, 38, 37, 54, 53, 55, 52, 51, 61, 60, 63, 31, 30, 62, 32, 29, 28, 57, 56, 64, 34, 33, 59, 36, 26, 25, 58, 35, 27, 24, 23, 129, 128, 130, 127, 126
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Comments

This bijection maps between the "standard" ordering of binary trees as encoded by A014486 and "variant A quaternary encoding" as explained in the sequence A085184.
This is a rare example of Catalan Automorphism (with simple definition) where the cycle count sequence (A089411) is not monotone. (See A127296 for more complex example.)

Crossrefs

Row 12 of A122202. Inverse of A074684. a(n) = A057163(A074682(A057163(n))).
The number of cycles, maximum cycle sizes and LCM's of all cycle sizes in subpermutations limited by A014137 and A014138 are given by A089411, A086586 and A089412.

A074684 Permutation of natural numbers induced by Catalan Automorphism *A074684 acting on the parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 4, 6, 22, 21, 18, 17, 20, 13, 12, 10, 9, 11, 15, 14, 19, 16, 64, 63, 59, 58, 62, 50, 49, 46, 45, 48, 55, 54, 61, 57, 36, 35, 32, 31, 34, 27, 26, 24, 23, 25, 29, 28, 33, 30, 41, 40, 38, 37, 39, 52, 51, 60, 56, 43, 42, 47, 44, 53, 196, 195, 190, 189, 194
Offset: 0

Views

Author

Antti Karttunen, Sep 11 2002

Keywords

Comments

This bijection maps between the "standard" ordering of binary trees as encoded by A014486 and "variant A quaternary encoding" as explained in the sequence A085184.
This is a rare example of a simply defined Catalan Automorphism where the cycle count sequence (A089411) is not monotone. (See A127296 for a much more complex example.)

Crossrefs

Row 17 of A122201. Inverse of A074683. a(n) = A057163(A074681(A057163(n))).
The number of cycles, maximum cycle sizes and LCM's of all cycle sizes in subpermutations limited by A014137 and A014138 are given by A089411, A086586 and A089412.

A127289 Signature-permutation of a Catalan automorphism: composition of A127291 and A057164.

Original entry on oeis.org

0, 1, 3, 2, 6, 8, 7, 5, 4, 15, 20, 14, 19, 21, 18, 22, 16, 11, 13, 17, 12, 10, 9, 39, 53, 41, 55, 59, 40, 54, 38, 52, 57, 37, 51, 56, 58, 47, 60, 49, 62, 64, 48, 61, 43, 29, 34, 42, 28, 33, 35, 50, 63, 46, 32, 36, 44, 30, 25, 27, 45, 31, 26, 24, 23, 113, 155, 118, 160, 173
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This is otherwise like A127291, but uses A127285 instead of A127287 as a "picker permutation" for the function "tau", which can be found in the entry A127291. A014486->parenthesization is given in A014486. This permutation contains some exceptionally large cycles, see A127297.

Crossrefs

Inverse: A127290. a(n) = A127291(A057164(n)) = A057164(A127299(n)). The number of cycles, maximum cycle sizes and LCM's of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of this permutation are given by A127296, A127297 and A127298.

Programs

A127297 Maximum cycle size in range [A014137(n-1)..A014138(n-1)] of permutation A127289/A127290.

Original entry on oeis.org

1, 1, 2, 5, 10, 18, 86, 345, 866, 2639, 13341, 46236, 207882
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

Note that a(12)/A000108(12) = 207882/208012 = 0.9994..., i.e. one orbit visits over 99.9% percent of all the Cat(12) structures of size 12, leaving only 208012 - 207882 = 130 structures for other A127296(12)-1 = 9 cycles. Cf. A127298.
Showing 1-4 of 4 results.