cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A127291 Signature-permutation of Elizalde's and Deutsch's 2003 bijection for Dyck paths.

Original entry on oeis.org

0, 1, 3, 2, 6, 7, 8, 5, 4, 15, 18, 14, 16, 17, 20, 22, 19, 11, 12, 21, 13, 10, 9, 39, 47, 40, 48, 50, 41, 49, 38, 43, 46, 37, 42, 44, 45, 53, 60, 54, 61, 63, 55, 62, 52, 29, 32, 51, 28, 30, 31, 59, 64, 57, 34, 36, 56, 33, 25, 26, 58, 35, 27, 24, 23, 113, 136, 116, 139, 146
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

Deutsch and Elizalde show in their paper that this automorphism converts certain properties concerning "tunnels" of Dyck path to another set of properties concerning the number of hills, even and odd rises, as well as the number of returns (A057515), thus proving the equidistribution of the said parameters.
This automorphism is implemented with function "tau" (Scheme code given below) that takes as its arguments an S-expression and a Catalan automorphism that permutes only the top level of the list (i.e., the top-level branches of a general tree, or the whole arches of a Dyck path) and thus when the permuting automorphism is applied to a list (parenthesization) of length 2n it induces some permutation of [1..2n].
This automorphism is induced in that manner by the automorphism *A127287 and likewise, *A127289 is induced by *A127285, *A057164 by *A057508, *A057501 by *A057509 and *A057502 by *A057510.
Note that so far these examples seem to satisfy the homomorphism condition, e.g., as *A127287 = *A127285 o *A057508 so is *A127291 = *A127289 o *A057164. and likewise, as *A057510 = *A057508 o *A057509 o *A057508, so is *A057502 = *A057164 o *A057501 o *A057164.
However, it remains open what are the exact criteria of the "picking automorphism" and the corresponding permutation that this method would induce a bijection. For example, if we give *A127288 (the inverse of *A127287) to function "tau" it will not induce *A127292 and actually not a bijection at all.
Instead, we have to compute the inverse of this automorphism with another, more specific algorithm that implements Deutsch's and Elizalde's description and is given in A127300.

Crossrefs

Inverse: A127292. a(n) = A127289(A057164(n)) = A057164(A127299(A057164(n))). A127291(A057548(n)) = A072795(A127291(n)), A127291(A072795(n)) = A127307(A127291(A057502(n))) for all n >= 1. The number of cycles, maximum cycle sizes and LCM's of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of this permutation are given by A127293, A127294 and A127295. Number of fixed points begins as 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, ...

A127289 Signature-permutation of a Catalan automorphism: composition of A127291 and A057164.

Original entry on oeis.org

0, 1, 3, 2, 6, 8, 7, 5, 4, 15, 20, 14, 19, 21, 18, 22, 16, 11, 13, 17, 12, 10, 9, 39, 53, 41, 55, 59, 40, 54, 38, 52, 57, 37, 51, 56, 58, 47, 60, 49, 62, 64, 48, 61, 43, 29, 34, 42, 28, 33, 35, 50, 63, 46, 32, 36, 44, 30, 25, 27, 45, 31, 26, 24, 23, 113, 155, 118, 160, 173
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This is otherwise like A127291, but uses A127285 instead of A127287 as a "picker permutation" for the function "tau", which can be found in the entry A127291. A014486->parenthesization is given in A014486. This permutation contains some exceptionally large cycles, see A127297.

Crossrefs

Inverse: A127290. a(n) = A127291(A057164(n)) = A057164(A127299(n)). The number of cycles, maximum cycle sizes and LCM's of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of this permutation are given by A127296, A127297 and A127298.

Programs

A127300 Signature-permutation of A057164-conjugate of the inverse of Elizalde's and Deutsch's 2003 bijection for Dyck paths.

Original entry on oeis.org

0, 1, 3, 2, 8, 4, 7, 6, 5, 22, 11, 17, 16, 12, 21, 9, 20, 19, 10, 18, 14, 13, 15, 64, 33, 48, 47, 34, 58, 23, 57, 56, 24, 49, 37, 35, 38, 63, 30, 45, 44, 31, 62, 28, 61, 60, 29, 46, 42, 32, 43, 59, 25, 54, 53, 26, 50, 39, 36, 40, 55, 51, 27, 52, 41, 196, 102, 145, 144, 103
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

Used to construct the inverse for A127291.

References

  • Emeric Deutsch and Sergi Elizalde, A simple and unusual bijection for Dyck paths and its consequences, Annals of Combinatorics, 7 (2003), no. 3, 281-297.

Crossrefs

Inverse: A127299. a(n) = A057164(A127292(A057164(n))) = A127290(A057164(n)). Cf. A014486.
Showing 1-3 of 3 results.