cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A127316 a(n) = 2*n^2 - 4*n + 73.

Original entry on oeis.org

71, 73, 79, 89, 103, 121, 143, 169, 199, 233, 271, 313, 359, 409, 463, 521, 583, 649, 719, 793, 871, 953, 1039, 1129, 1223, 1321, 1423, 1529, 1639, 1753, 1871, 1993, 2119, 2249, 2383, 2521, 2663, 2809, 2959, 3113, 3271, 3433, 3599, 3769, 3943, 4121, 4303, 4489
Offset: 1

Views

Author

Michael M. Ross, Mar 28 2007

Keywords

Comments

Extrapolates a quadratic passing through 71, 73, and 79.

Examples

			If n=10 then 2*n^2 - 4*n + 73 = 233.
		

Crossrefs

Programs

Formula

G.f.: x*(71 - 140*x + 73*x^2)/(1 - x)^3. - Arkadiusz Wesolowski, Oct 24 2013
Sum_{n>=1} 1/a(n) = 1/142 + coth(sqrt(71/2)*Pi)/(2*sqrt(142)). - Amiram Eldar, Jul 30 2024
From Elmo R. Oliveira, Nov 03 2024: (Start)
E.g.f.: exp(x)*(2*x^2 - 2*x + 73) - 73.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Extended by Charles R Greathouse IV, Jul 25 2010