A127328 Inverse binomial transform of A026641; binomial transform of A127361.
1, 0, 3, 3, 15, 30, 99, 252, 747, 2064, 5973, 16995, 49089, 141414, 409755, 1188243, 3455811, 10064952, 29368377, 85809681, 251067645, 735446106, 2156695533, 6330729438, 18600079221, 54693760680, 160951905819, 473984678037, 1396755865527, 4118553190254
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..30], n-> Sum([0..n], k-> Sum([0..k], j-> (-1)^(n+j)* Binomial(k+j, j)*Binomial(n,k)))); # G. C. Greubel, Apr 30 2019
-
Magma
[ (&+[ (&+[(-1)^(n+j)*Binomial(k+j, j)*Binomial(n, k): j in [0..k]]): k in [0..n]]) : n in [0..30]]; // G. C. Greubel, Apr 30 2019
-
Mathematica
a[n_]:= Sum[(-1)^n*Sum[(-1)^j*Binomial[k+j, j], {j,0,k}]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Apr 30 2019 *)
-
PARI
{a(n) = sum(k=0,n, sum(j=0,k, (-1)^(n+j)*binomial(k+j, j)* binomial(n, k)))}; \\ G. C. Greubel, Apr 30 2019
-
Sage
[sum(sum((-1)^(n+j)*binomial(k+j, j)*binomial(n, k) for j in (0..k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Apr 30 2019
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(n+j)*binomial(k+j, j)*binomial(n, k). - G. C. Greubel, Apr 30 2019
a(n) ~ 3^n / sqrt(3*Pi*n). - Vaclav Kotesovec, Jul 20 2019
Extensions
Terms a(10) onward added by G. C. Greubel, Apr 30 2019
Comments