A127427 a(n) = v_3( (6n)! ) - v_3( (3n)! ), where v_3(N) is the 3-adic valuation A007949(N).
0, 1, 3, 4, 5, 8, 9, 10, 12, 13, 14, 16, 17, 18, 22, 23, 24, 26, 27, 28, 30, 31, 32, 35, 36, 37, 39, 40, 41, 43, 44, 45, 48, 49, 50, 52, 53, 54, 56, 57, 58, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 107
Offset: 0
Keywords
Links
- Sung-Hyuk Cha, On Integer Sequences Derived from Balanced k-ary Trees, Applied Mathematics in Electrical and Computer Engineering, 2012. - From _N. J. A. Sloane_, Jun 12 2012
- Sung-Hyuk Cha, On Complete and Size Balanced k-ary Tree Integer Sequences, International Journal of Applied Mathematics and Informatics, Issue 2, Volume 6, 2012, pp. 67-75. - From _N. J. A. Sloane_, Dec 24 2012
Programs
-
Mathematica
s[n_] := Plus @@ IntegerDigits[n, 3]; a[n_] := (3*n + s[3*n] - s[6*n])/2; Array[a, 100, 0] (* Amiram Eldar, Feb 21 2021 *)
-
PARI
a(n) = valuation((6*n)!, 3) - valuation((3*n)!, 3); \\ Michel Marcus, Jul 29 2017
Formula
a(n) - n = a( [(n+1)/3] ).